PAGE

Mechanisms for Answering “Why Not” Questions in

Rule- anD Object-Based Systems

by

Cynthia J. Martincic, Ph.D. Candidate

B.S., University of Pittsburgh, 1977

A.S., Community College of Allegheny County, 1992

M.S.I.S., University of Pittsburgh, 1996

Submitted to the Graduate Faculty of the School of Information Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy

University of Pittsburgh

2001

Copyright by Cynthia J. Martincic

2001

Douglas P. Metzler

Dissertation Advisor

ABSTRACT

Mechanisms for Answering “Why Not” Questions in

Rule- anD Object-Based Systems
Cynthia J. Martincic, Ph.D. Candidate

University of Pittsburgh, 2001

One type of question that has largely been avoided in explanation facilities for expert systems is the negative, “Why not” type of question. This question asks the intelligent system why a user-anticipated conclusion was not realized by the system.

There have been some systems that have dealt with this type of question, but the knowledge representations in these systems are limited. The mechanisms developed for this dissertation are an attempt to overcome the limitations of these past systems at least in part by furnishing tools that assist in more cooperative answers to “Why not” types of questions for systems whose conditions and actions are both more complex (utilizing more complex objects and continuously varying values) and more general (utilizing variables). The mechanisms developed were implemented in a problem-practice system for entity relationship diagrams for database management systems. An initial protocol analysis of user interaction with the developed system was performed to provide a preliminary qualitative look at how users interact with the facilities provided and to collect their comments about the environment. Results of the analyses were somewhat mixed but were promising, and the observations and comments provide insight into future development directions for the system.
Dedication
A number of people supported me in a number of different ways during my graduate degree pursuits. My dissertation advisor, Doug Metzler, was very supportive and patient and demonstrated what it really means to be a mentor. My daughter, Rachel, kept the number of traumatic events in her high school years to a minimum and is maturing into a truly wonderful person. My mother and other family members provided emotional and financial support during difficult personal periods. My friends, Debbie Edwards, Monika Schwartz, Arnold Weissberg, Ed (AKA Tom) Shakoske and Vince Rafeew, supplied countless hours of conversation, laughter and good times. For all of the above, I am truly grateful.

TABLE OF CONTENTS
11. Introduction

62. The Problem

82.1 The Approach

112.2 The Scope of This Work

143. Background

153.1 Varieties of Explanatory Interactions

153.1.1 Natural Language

183.1.2 Graphic Portrayals of Expert System Reasoning

183.1.2.1 Views of System Reasoning

193.1.2.2 Simulations

203.1.3 Multimedia Presentations

233.1.4 The Knowledge Behind These Systems

253.2 Current Trends in Knowledge Representations for Expert Systems and Explanation of Dynamic Reasoning

273.2.1 Task or Problem-Solving Frameworks

273.2.1.1 The Generic Task Framework

283.2.1.2 The Components of Expertise Framework

283.2.1.3 CommonKADS

293.2.1.4 Generalised Directive Models

293.2.1.5 EES

303.2.1.6 Explanations in Task or Problem-Solving Frameworks

313.2.1.7 Criticism of The Task and Problem-Solving Frameworks

323.2.2 Ontological Frameworks

333.2.2.1 Explicit, Concrete and Domain-Specific Knowledge Representations

343.2.2.2 Abstract Representations

343.2.2.3 Explanation Using Ontologies

363.3 More Questions – Why Not?

393.4 Summary and Relation to This Work

424. Research Approach

454.1 Answering “Why not” Questions in Complex Rule-based Systems

504.2 QUE

524.2.1 The Context Mechanism

544.2.2 The Relaxation Mechanisms

554.2.2.1. Invoking and Controlling the Relaxation Process

594.2.2.2 Constraint Relaxation Information

614.2.2.3 Relaxation of Numeric Slots

644.2.2.4 Relaxation of Symbolic Slots

674.2.2.5 Relaxation of the Class Specifier of an Object Clause

674.2.2.6 Relaxation of Test Clauses

684.2.3 Browsers and Interactive Tools

684.2.3.1 The Rules and Objects Window

724.2.3.2 The Rule Analysis Window

774.2.4 Asking a “Why not?” question in QUE

784.3 ERD-QUE

794.3.1 The Choice of Application

794.3.2 The Choice of Domain

804.3.3 Interfaces for ERD-QUE

804.3.3.1 The Control Window

824.3.3.2 The Problem Description Window

834.3.3.3 The Expert Diagram Window

854.3.3.4 The Alternate Diagram

885. Preliminary Analyses of ERD-QUE

885.1 Methods

895.2 The Task

945.3 An Idealized Example of Possible Actions.

985.4 The Pilot Study

995.5 Subjects

1005.6 Results

1005.6.1 Answers to Problem Questions.

1025.6.2 The Log File Data

1045.7 Post-Use Questionnaire Answers, Comments and Suggestions

1045.7.1 Answers to Rating Questions

1075.7.2 Comments and Suggestions

1085.8 Discussion

1116. Discussion and Future Directions

1116.1 Summary

1166.2 Discussion

1186.3 Future Directions

1186.3.1 Further Development of ERD-QUE

1206.3.2 Further Development of the QUE Mechanisms

1216.3.3 Future Implementations Based on QUE

1237. References

134Appendices

135Appendix A Context Mechanism Code

138Appendix B Constraint Relaxation Code

165Appendix C Code For Why and WhyNot Questions

179Appendix D Code for Diagram Questions

188Appendix E Observational Study Materials

LIST OF FIGURES

Figure 1. QUE and ERD-QUE

10

Figure 2. Explanatory paragraph from KNIGHT (Lester and Porter, 1997)
16

Figure 3. An example of interaction with the Atlas-Andes tutor (Freedman, Rosé, Ringenberg and VanLehn (2000).

17

Figure 4. Herman the Bug (Lester, Stone and Stelling, 1999).
23

Figure 5. Paraphrase of a rule from DeBrief (Johnson, 1994)
39

Figure 6. The QUE architecture.

43

Figure 7. Paraphrase of a rule from DeBrief (Johnson, 1994)
46

Figure 8. Example of a rule antecedent with more complex constraints.
46

Figure 9. Activities facilitated by the context mechanism

53

Figure 10. First example of numeric constraint relaxation.

62

Figure 11. Second example of numeric constraint relaxation

64

Figure 12. Third example of numeric constraint relaxation.

64

Figure 13. First example of symbolic constraint relaxation

65

Figure 14. Second example of symbolic constraint relaxation
65

Figure 15. The Rules and Objects Window

70

Figure 16. Object Detail Example

72

Figure 17. The Rule Analysis Window

74

Figure 18. Internal question syntax.

77

Figure 19. The Control Window

81

Figure 20. The Problem Description Window

82

Figure 21. The Expert System Diagram Window

84

Figure 22. The Alternate Diagram Window

86

Figure 23. Problem 1 of ERD-QUE (adapted from Franklin, 2001).
92

Figure 24. Problem 2 adapted from Hawryszkiewycz, (1984).
92

Figure 25. Problem 3 adapted from Teory, (1994).

93

Figure 26. Problem 4 adapted from Zaïane (2001b)

94

Figure 27. Training problem adapted from Zaïane (2001a)

95

LIST OF TABLES

Table 1. Constraint Relaxation Information Recognized by QUE Processes.
59

Table 2. Scores for Questions 1-4 for Problems 2-4.

100

Table 3. Correlations of the Sum of Scores for Questions #2 and #3 for Problems 2-4 and Subject Education and Experience Levels.

101

Table 4. Subject Use of QUE facilities.

102

Table 5. Post-Use Questionnaire Ratings of QUE Tools (on a scale of 1 - 7).
105

Table 6. Scores of Answers to Question 10 on Post-Use Questionnaire
106

1. Introduction

Humans seem to have a natural instinct for wanting to understand and make sense of their environment and the things in it. This urge to understand and explain phenomena is the drive behind activities ranging from ancient myths that accounted for atmospheric occurrences with the actions and emotions of a variety of gods, to the curious child who dismantles a toy to see how it works, to all sorts of scientific research endeavors. The effects of understanding how something works and not understanding can be dramatic. For example, understanding the means of transmission of cholera led to ending the severe choleric epidemic in London in 1854. Even though the pathogenic bacterium was not visible to the naked eye, understanding the means of transmission led to the removal of a well pump handle and the end of an epidemic that had taken the lives of hundreds of people.

The difference between misunderstanding and understanding how something functions is just as important in man-made systems as it is in natural phenomena. Lack of understanding how a piece of equipment functions can lead to misuse of that equipment. This generalization can be extended to software as well as hardware and has particular importance when the software is said to be “intelligent”.

It is generally accepted that no current intelligent computational system possesses enough world knowledge and reasoning abilities to allow it to reason as flexibly as humans manage to do, even within limited domains. All intelligent computational systems have their limitations and it is crucial that the users of these systems understand how a particular system functions and be able to determine when the system is functioning correctly and when it has reached its knowledge and reasoning limits (Hollnagel, 1990; Morgan, 1992; Suh and Suh, 1993). Catastrophic results can occur not only when the user trusts the system in situations where the system is incorrect (Dijskstra, Liebrand and Timminga, 1998) but also when the user mistrusts the system and follows his own intuitions when, in fact, the system is correct. Many useful intelligent applications have been shelved due to lack of user acceptance. Lack of effective explanation facilities to query the system can affect user trust in the system (Gregor and Benbasat, 1999) and can contribute to the rejection of the system.

Due in part to the problem that users have when dealing with a computational system that is to be considered intelligent and yet is known not to be perfect and all-knowing, there have been efforts to design intelligent systems that operate in a more cooperative manner with users rather than as a stand-alone authority. Users want to know more that just what the diagnosis is or what remedy should be prescribed. They also want to be able to ask questions and negotiate a solution. In other words, the user wants to be involved in the problem-solving process. Many, such as Norman (1993), Woods, Roth and Bennett (1990) and Clancey (1997), envision the power of intelligent systems used in the form of cognitive prostheses and/or cognitive tools that can be wielded by a competent practitioner. This movement towards cooperative systems started over a decade ago. Buck (1989) noted that because of the fallibility of all intelligent computational systems, there is a need to keep the human users/operators of such systems in ultimate control and Kidd and Sharpe (1987) called for a theory of cooperative problem-solving between man and machine. This implies that these systems will need to function in ways that complement, support and cooperate with the human user. This view of intelligent system utilization demands that the system be able to communicate flexibly with the human user with regard to its functioning and amplifies rather than diminishes the need for adequate facilities for the user to question the system.

Research on the provision of explanation facilities for intelligent systems has a long and diverse history. The research efforts began with some of the earliest intelligent systems (e.g., BLAH, Weiner, 1980; TEIRESIAS, Davis, 1979; SCHOLAR, Carbonell, 1970; SOPHIE, Brown, Burton and DeKleer, 1982; STEAMER, Stevens, Roberts and Stead, 1983) and have spanned the full range of intelligent reasoning paradigms from rule- and object-based systems (e.g., CLASSIC, Patel-Schneider, 1999; MYCIN, Clancey, 1983) to probabilistic systems (e.g., Druzdzel, 1994) to artificial neural networks (e.g., Nikolopoulis, 1997, p245-262). The research has been aimed at all types of users, because almost everyone who comes in contact with these systems, from the system developers to end users, can benefit from facilities that explain the reasons that a system arrived at a particular conclusion. The research efforts into explanation facilities are also diverse in terms of the range of disciplines concerned because of the complex nature of explanation and the number of issues involved.

Some of the factors to be considered in the provision of explanation facilities include the topic itself, what portions of the topic need to be explained, the types of interaction available, and the goals, beliefs and prior knowledge levels of the parties involved. Each of these issues has been examined in relative isolation in a number of different disciplines. For example, philosophers have debated what constitutes a scientific explanation and have identified a number of different explanation types such as statements of deductive or inductive inference, tracings of causal mechanisms, and the use of contrasts and definitions (e.g., Salmon, 1990). Linguists are interested in explanation as a rhetorical and conversational process involving natural language production and understanding, and the adherence to conversational maxims involving quantity, quality and manner (e.g., Austin, 1962; Grice, 1975; Cohen, Morgan and Pollack, 1990). Explanations may involve modes other than written or spoken language and the use of visualizations for explanatory purposes has been studied (e.g., Tufte, 1997). Collectively, the research into explanation facilities for intelligent computational systems has incorporated aspects of all of these issues, but individually each system produced has a particular focus or strength in a certain aspect of explanation and addresses other aspects in a limited fashion. As a result, the systems discussed in Section 3 have different architectures and underlying mechanisms dependent upon the particular explanatory task spotlighted by a line of research, such as producing multimedia explanations from a static knowledge base, explaining choices among a limited set of alternatives or explaining dynamic reasoning processes.

Broadly speaking, it can be said that research into intelligent system explanation facilities can be categorized into two groups that have complementary but different motivations. The motivation for one group is the desire to achieve sophisticated explanatory interactions with the user. This group focuses on the knowledge needed to support natural sounding interactive episodes. Due to the complexities of dialogue maintenance and/or constructing multimedia presentations, this first group often utilizes relatively static domain knowledge, avoiding problems of a varying knowledge base that can occur in systems that perform dynamic problem solving.

The use of static domain knowledge contrasts with the motivation of the second group. The motivation for this group is facilitating the knowledge acquisition, reasoning processes, maintenance and explanation capabilities of systems that perform dynamic reasoning or active problem solving. Often, research in this area involves extending the knowledge representations and the knowledge base of systems beyond what is necessary for the primary reasoning task. This group can be thought of as extending the work on the MYCIN/GUIDON project (Clancey, 1983) where it was found that categorization of the knowledge in the system facilitated all of these activities.

Of course, these two categories are not mutually exclusive. Overlap between the two groups occurs. For example, Moore (1995) has performed research into problem-solving systems with highly interactive explanatory facilities. However, the above categorization is useful in underscoring where the work discussed in this document falls along the multifaceted spectrum of intelligent system explanation research. The work undertaken in this dissertation coincides more closely with the latter group in that it proposes mechanisms that are meant to be used with the explanation facilities of active reasoning systems in the attempt to deal with a type of question that is often neglected in explanation facilities. The type of question that is the focus of these mechanisms is the negative or “Why not?” type of question. This type of question requests an explanation of why the intelligent system did not conclude a user-anticipated result.

This type of question might be asked by a system developer trying to determine if an expert system is reaching the right conclusions for the right reasons, or by a student wondering why his answer to a problem is considered incorrect, or by end-users of an intelligent system debating whether to accept or reject the recommendations of the system when they had anticipated another result.

These mechanisms for facilitating this type of question are included in and bring to fruition an earlier partially implemented environment called QUE (QUerying the Expert) which focuses on general exploratory tools for the investigation of “Why not?” and “What if?” types of questions (Martincic, 1996; Metzler and Martincic, 1995, 1998a, 1998b; Martincic and Metzler, 1995, 1999). QUE is designed to work within the rule- and object-based production system architecture. It is domain independent in that it can be applied to any reasoning system within this architecture. The focus of QUE is on the development of these tools to assist in answering these types of questions rather than on the communicative aspects of explanation. The interactive capabilities of the “proof of concept” implementation developed for this work are based on user-driven exploratory activity similar in spirit to systems which provide views into the expert systems’ reasoning processes and similar to the style of explanation facilities offered by some current expert system development environments.

In order to demonstrate the QUE mechanisms and tools developed for this work, a specific application that utilizes a small expert system in a particular domain was implemented. The application is a problem practice environment and the domain selected for the problems was entity relationship diagrams. The resulting application is called ERD-QUE (Entity-Relationship Diagrams – QUE).

Preliminary analyses of how eight diverse users interact with QUE in the form of ERD-QUE were performed. The results and comments from the users were mixed, but provided insight that will serve to focus the future development and application of the QUE mechanisms.

2. The Problem

Explanation provision is a complicated process involving both knowledge of a domain and knowledge regarding communication of that domain knowledge. Research into intelligent system explanation facilities has been extensive and much insight has been gained along both major aspects of explanation provision. A review of the major research directions is found in Section 3 and serves to establish where along the broad spectrum of explanation research this work falls. This work focuses on explanation of problem solving processes rather than static knowledge and focuses on what is needed to answer one certain type of question regarding a problem-solving episode rather than the communicative aspects of explanation. More specifically, it focuses on the knowledge and mechanisms that assist in answering “Why not” types of questions concerning a problem-solving process in nonmonotonic systems that utilize the full capabilities of rule- and object-based systems. The approach taken is to provide tools for a human user to determine reasons for belief discrepancies rather than to develop system-generated explanations.

Despite the many advances in both of the aspects of explanation, the basic types of questions that can be answered by intelligent system explanation facilities have remained relatively constant. According to Ellis (1989) and others (e.g., Gregor, 2001; Richards, 2000; Martin and Mitrovic, 2000), there are a number of types of questions that humans have been observed to ask of human experts. These questions can be roughly categorized into groups of questions that begin with “What”, “How”, “Why”, “Why not” and “What if”. For the most part, the types of questions that most explanation facilities have concentrated on are the “What”, “Why” and “How” types of questions. The large amount of research into explanation facilities that can answer these three types of questions indicates that these types of questions are not necessarily easy for a computational system to answer, even though the answers do stem from the knowledge base and/or the reasoning path taken by the system. Two other types of questions, the negative “Why not” type of question and the hypothetical “What if” type of question, have been largely ignored by most explanation research. One reason that these questions have been avoided is because the answers do not stem directly from the knowledge base or the reasoning path and are therefore more difficult to provide.

Humans seem to answer these negative and hypothetical questions by guessing at possible reasoning paths or assumptions that the other person may have used in arriving at a certain conclusion. These “guesses” serve to constrain the possible answers to these questions. However, most computational intelligent systems do not have the knowledge available to them that would assist in making these sorts of guesses (Ellis, 1989). Particularly in the case of the “Why not” type of question, a computational system encounters difficulty because there are, in general, an impractically large number of possibilities to consider. In order to answer this type of question, the system must try to determine at what point during its reasoning process it would have had to have diverged from the path originally taken and which alternative path leading from that point might have led to the user’s conclusion.

There are some systems that have dealt with this type of question (See Section 3.3). However, some limitations of these systems simplified some of the difficult aspects of answering this type of question. One limitation seen is that the representations of the knowledge in these systems are for the most part quite simple, consisting of discrete constraints using uncomplicated values. This work addresses the issue of answering “Why not” types of questions in systems that utilize rules with full predicate logic equivalent pattern matching and complete object representation as opposed to systems that utilize simpler, more specific representations than this work addresses (See Section 4.1).

A second limitation seen in some previous attempts to answer this type of question is that the question can only address pre-defined actions of the system and not the full range of actions that might have occurred. This work does not enforce such a limitation.

A third limitation addressed in this work is the issue of nonmonotonicity in expert systems. When an expert system reasons nonmonotonically, objects are created, deleted and modified curing the reasoning process. In such a system, at any point along the reasoning path, there is no way to know what objects existed at any earlier point. This makes identification of failed constraints that might have led to a particular result or of actions that might have prevented a particular result difficult to identify.

A final limitation of previous systems is that, in general, they do not reconstruct an entire line of reasoning that might have led to the user-anticipated result nor do they identify the important or relevant reason for the failure to reach the user-anticipated result. This relevant reason for failing to achieve the user anticipated result might have occurred at some earlier state in the reasoning path that is no longer available to the user. The typical answer to a “Why not” type of question in previous systems is the rule or operator that would have resulted in the value asked about by the user and which constraint prevented the rule from firing or the operator from being applied.

2.1 The Approach

As mentioned above, the problem with “Why not” questions is that the answer does not follow from the reasoning path and there are potentially a large number of possibilities to consider. The approach taken in QUE is to allow the user to drive the mechanisms of the system in directions of interest to the user. This user-driven approach is facilitated by the exploratory environment of QUE.

Previous systems that have answered “Why not” types of questions have had some limitations. One of the limitations is the representation in earlier systems. The type of rule under consideration for this work has conditions and actions that are both more complex (utilizing more complex objects and continuously varying values) and more general (utilizing variables).

Two issues arise with this type of rule. One is that rule retrieval is more difficult because the rule consequents utilize variables in actions involving complex objects. Thus, the components of the rule consequent will rarely match the user-anticipated result exactly and the system must locate rules that act on the same types of objects of interest to the user.

The second issue involves determining how close the system was in arriving at the user-anticipated conclusion. Two aspects of this issue are the nonmonotonicity of the system and the complexity and interdependency of the rule constraints. For example, it may be the case that the user-anticipated result may have been possible at an earlier state in the reasoning path, but was blocked by another action that eliminated the possibility. Identification of failed constraints is more difficult due to the complexity of the representation, the possible interdependency of constraints and the different types of constraints that may be encountered.

The approach taken to these issues was the development of general mechanisms that assist the user of a rule- and object-based system in identifying failed constraints that might have led to the user-anticipated result and that furnish information regarding the objects in the knowledge base that are closest to the failed constraints. The approach utilizes information regarding the types of constraints in rule antecedents and the meaningful ways in which the constraints might be relaxed in order to locate closest matches. Identification of this sort of information regarding how to go about finding close matches and the mechanisms that utilize this information are a part of the constraint relaxation mechanism of QUE.

The system also maintains information that allows past system states to be re-established so that investigation of the rules and objects that were available in any state can occur. This permits the user to locate past states in which a particular action may have been close to occurring or blocked by another action.
[image: image8.wmf]

ERD

-

QUE

QUE

Inference Engine

Knowledge Base of Rules and

Objects

Context

Mechanisms

Relaxation

Mechanisms

Problem Presentation and

Question Asking Facilities

The QUE environment developed in the present work does not itself reconstruct an entire line of reasoning that might have resulted in the user-anticipated result, but it does provide the user with a number of tools for establishing such a line of reasoning. It provides a means of tracing backwards through a series of possible actions and for identifying failed constraints that might have resulted in the expected conclusion. It affords the user the means to investigate failed constraints by asking follow-up questions on such constraints. It also furnishes information regarding the closest matches to failed constraints in order to help the user determine how close or how far the system came to concluding the user’s expected result. Thus the present system provides the user with otherwise difficult-to-determine information that the user can employ to explore the space of possible reasoning paths and to understand the reasons such steps were taken or prevented. These possible alternative reasoning paths provide the answers to the “Why not” type of question. These mechanisms are collected and coordinated in a system called QUE. It is anticipated that future versions of this system might attempt to provide more independent default mechanisms to assist the user along these lines.

In addition to the development of general mechanisms for this purpose, this work involved the development of a “proof of concept” application (ERD-QUE) to utilize the mechanisms (Figure 1) and an informal study to provide a preliminary qualitative look at how users interact with the mechanisms and tools developed.

2.2 The Scope of This Work

The focus of this work was the development of tools that address a gap in the types of questions that can be handled by expert system explanation facilities. It tackles three aspects of answering “Why not” types of questions: (1) by overcoming the limitations of previous systems that have provided answers to this type of question but use simple, discrete values (2) by providing the means for the user to construct a hypothetical line of reasoning that might have resulted in the expectation expressed in the “Why not?” question and (3) by furnishing information regarding the closest possible matches to failed constraints.

These functionalities extend the explanation facilities of previous systems, but there are some limitations that were recognized at the outset of development. These include the general limitations evidenced by many computational systems that are developed as a “proof of concept” implementation, the limited interaction style furnished by the exploratory environment, and the limited initial observation of system usage.

In terms of scalability, although it is recognized that the current implementation utilizes a specific domain expert system that is relatively small and has a relatively flat structure, the system can utilize a domain expert system of any complexity. While users might find it more difficult to work with QUE in more complex reasoning situations, there is every reason to suppose that the more difficult or more complex a reasoning situation (or reasoning system) is, the more useful the sorts of computational aids incorporated in QUE would be. Moreover, it is believed that the system could be augmented to work with a variety of representation paradigms including those representations that utilize different layers and types of knowledge assuming that knowledge was represented in the rule- and object paradigm used by QUE. For example, in a representation scheme such as KADS (Wielinga, Schreiber and Breuker, 1992) that distinguishes the different types of knowledge required for a task (See Section 3.2.1.3), QUE might be used to identify a particular strategy that could have resulted in the user-anticipated results but was not attempted or was attempted and abandoned by the expert system.

In terms of applicability, it is recognized that this type of question may not arise in every domain, every problem type, or every specific problem situation. However, this type of question has been identified as one that might be asked by a variety of users in a variety of situations. It is projected that the basic QUE concepts could be applied to a wide variety of users in a number of different scenarios, but this work looked at only a subset of the QUE features in one type of application.

In order to function optimally, QUE utilizes additional information regarding the types of objects in the system. This additional information must be provided by the expert system developer. This admittedly may place an additional burden on the developer of the expert system. However, there are two points that can be made in defense of the use of additional information that is not directly required for the expert system’s reasoning processes. One is that QUE does not require that such information be included and it does contain default mechanisms which can be relied upon in the absence of such information. The second point is that it is generally accepted that the user should be included from the outset of the design of the expert system (Clancey, 1997). Including the user at the outset of development often includes acknowledging the need to include additional knowledge for the purpose of explanation and the need to represent knowledge in ways that it can be accessed and utilized by explanation facilities.

The rudimentary style of user interaction limits the applicability of the system. The linguistic and communicative aspects of explanation are addressed only minimally in this work via the use of simple sentence templates for both user question input and system response output. It is anticipated, however, that the methods developed here could also be useful in a system incorporating natural language and/or multimedia capabilities. In addition to the sentence template output, the system provides a variety of views into the reasoning processes of the system through a variety of interfaces to the rules and objects of the system. This means that the user of this system must have some knowledge of rule-based systems and object-oriented representations and therefore the system is not comprehensible to the average person prior to specific training on these issues.

The exploratory nature of the application environment places demands on the user who must in some cases expend significant effort in order to find the answer to a question. QUE does not construct an entire line of reasoning that might have concluded what the user expected as a human might try to do in answering a “Why not” sort of question. QUE does provide tools that are meant to assist the user in assembling a hypothetical line of reasoning that might have resulted in his expectation, but the user must initialize and maintain a series of actions that result in such a construction.

There is some evidence that unless there is a strong need on the part of the user to obtain an explanation, users tend to ignore available explanation facilities (Gregor and Benbasat, 1999). Results of the preliminary observations of users interacting with the system coincide with that tendency. The observations indicate that the system was more successful in attaining its objectives with users who had prior motivation to increase their knowledge about expert systems (See Section 5).

3. Background

There are many ways in which the early efforts in explanation facilities presaged the more recent efforts. Early efforts were aimed at the entire range of users who benefit from explanation facilities, such as students using intelligent tutoring systems (e.g., SCHOLAR, Carbonell, 1970), end users of expert systems (e.g., BLAH, Weiner, 1980) and system developers and maintainers (e.g., TEIRESIAS, Davis, 1979). All of these types of users remain the targets of explanation facilities today. The natural language capabilities of the early explanation systems varied, ranging from canned text to the use of sentence templates to the generation of multiple sentences and interactive dialog maintenance. Section 3.1.1 reviews current research that is aimed at providing quite sophisticated textual explanatory interactions, but other systems still utilize some of the relatively rudimentary communication methods of early systems in their explanation facilities (see Section 3.2.1.6). Finally, early systems that utilized graphics in explanations and simulations such as SOPHIE, (Brown, Burton and DeKleer, 1982) and STEAMER (Stevens, Roberts and Stead, 1983) can be regarded as foreshadowing the current generation of simulation systems as well as multimedia presentation systems.

The early explanation systems also illustrated the different types of knowledge involved in providing explanations. These types of knowledge can be usefully categorized into two main types: (1) communication knowledge regarding how to say what it knows and (2) content knowledge regarding the domain, topic or problem-solving episode that needs to be explained. It is this latter type of knowledge that is the focus of the second part of this section and of the line of research detailed in later sections.

For the purposes of this review, the research into explanation facilities is divided along these two broad and overlapping branches. One branch is primarily concerned with the interaction involved in explanation. The other is concerned with the development of knowledge representations that support knowledge acquisition and problem solving and additionally can later be utilized in explanations of reasoning processes.

There have been some systems that addressed the specific type of question that is the focus of this work. These systems are reviewed in Section 3.3.

3.1 Varieties of Explanatory Interactions

This section contains a review of the wide variety of interaction types that are being utilized in explanation facilities. Some systems that exhibit very sophisticated interactive capabilities are reviewed as well as systems with more rudimentary interactions. There are many ways in which these systems could be categorized and, regardless of the categorization scheme, some systems would fall into more than one category. For this review, they have been grouped according to the following three major interaction capabilities: (1) natural language, (2) graphics and simulations, and (3) multimedia systems. As will be evident, the developers of these systems for the most part, consider explanation to be the main task of the system. The dynamic knowledge in the system is primarily limited to the knowledge regarding the presentation of information and dialog maintenance. The content of many of the explanation facilities reviewed in this section is mostly static and predefined. The exceptions to this generalization are those systems in the second category, which graphically depict the reasoning processes of problem-solving episodes and those systems which explain complex processes via simulations.

3.1.1 Natural Language

Significant developments in computational linguistics have improved the quality of natural language question answering facilities. The systems employing natural language draw upon decades of work in linguistics such as the work of Searle (1969), Grice (1975) and Austin (1962).

There are two types of systems that are reviewed in this section. The first, represented by the KNIGHT system (Lester and Porter, 1997), provides one-shot explanatory paragraphs. The second type of natural language system is represented by systems that are more interactive and are capable of maintaining interactive dialogs with the user. This type of natural language interactions is represented by systems developed by Cawsey (1992), Maybury (1992, 1998) and Freedman, Rosé, Ringenberg and VanLehn (2000).

Embryo sac formation is a kind of female gametophyte formation. During embryo sac formation, the embryo sac is formed from the megaspore mother cell. Embryo sac formation occurs in the ovule.

Embryo sac formation is a step of angiosperm sexual reproduction. It consists of megasporogenesis and embryo sac generation. During megasporogenesis, the megaspore mother cell divides in the nucellus to form 4 megaspores. During embryo sac generation, the embryo sac is generated from the megaspore.

Figure 2. Explanatory paragraph from KNIGHT (Lester and Porter, 1997).

The KNIGHT system (Lester and Porter, 1997) generates multi-sentential and multi-paragraph explanatory texts for a large semantically rich knowledge base of botanical anatomy, physiology and development (Figure 2). These are primarily one-shot attempts at explanation. There is no opportunity for the user to provide any feedback in terms of satisfaction with the explanation or to request clarification of a portion of the explanation. A relatively simple user model is maintained that keeps track of what has been presented so far in order for the system to avoid too much repetition of information in successive explanations. This type of user model is considered rudimentary because more sophisticated user models have been in use for more than a decade. For example, the student model module in ADVISOR (McKeown, 1988) attempts to identify the possible goals of the user in order to interpret and respond to user questions.

The KNIGHT system is impressive in terms of the quality of the paragraphs it can generate, which have been empirically judged to be close in quality to those produced by human experts in response to the same questions. However, the lack of interactive capabilities runs counter to Moore’s view (1995) of explanation. Moore, a strong advocate of responsive systems, says “Explanation is an inherently incremental and interactive process, requiring a dialogue between the advice giver and the advice seeker.”

Three systems that provide explanation in a more incremental and interactive fashion are those by Cawsey (1992), Maybury (1992, 1998) and Freedman, Rosé, Ringenberg and VanLehn (2000). Each of these systems provides some means for the user to interrupt the explanation and/or express a lack of understanding of the explanation. The system can then adjust the user model accordingly and re-plan the remainder of the explanation.

For example, EDGE (Cawsey, 1992), an electronic circuit tutoring system, uses two types of planning rules to guide explanatory exchanges. The first set is used to select the overall structure of the dialogue, such as opening and closing exchanges and the main body of the dialogue. The second set of rules determines the content of the explanation. Examples given by Cawsey of the interactions possible in EDGE sound natural and are informal in nature despite the relatively rudimentary input and output utilized by the system. A significant amount of natural language processing is avoided with user input performed via menu selections and mouse-clicks on a circuit diagram. This of course limits the expressivity of the user. The system output is performed with a variety of casual and informal sentence templates that are instantiated at runtime.

[image: image9.wmf]

If the bogey is a

contact

and the bogey is

hostile

and ROE is

achieved

Then

employ weapons

Maybury (1992, 1998) has classified explanation into four separate types which are closely related to the rhetorical acts of description, narration, exposition and argument. These communicative acts are formalized as plan operators in a hierarchical text planner called TEXPLAN. TEXPLAN is similar to EDGE in that the user input is also limited to a number of pre-set responses. These responses are provided so that the user can indicate acceptance of the explanation, a request for elaboration, an expression of disbelief or a lack of understanding. TEXPLAN then re-plans the explanation taking into account what has been said and what the user reaction was.

Freedman, Rosé, Ringenberg and VanLehn (2000) augmented the hint capabilities of the Andes Physics Tutor by adding dialogue capabilities. The dialogue capabilities of Atlas-Andes are meant to imitate the collaborative dialogues that occur between students and human tutors as opposed to the original hint sequences which were one directional. The system utilizes a “Tutorial Planner” which contains semantic mapping rules, operators for dialogue creation, operators for responding to specific student misconceptions as well as operators for domain-independent dialogue issues. Figure 3 shows an example of a dialogue from the Atlas-Andes tutor.

3.1.2 Graphic Portrayals of Expert System Reasoning

Early systems such as MYCIN revealed a number of problems in explanation provision. The rule traces originally furnished as explanations proved to be too lengthy and contained too much detail to be of much direct use. Efforts to furnish explicit categorizations and abstractions of the rules supplied a basis for improved explanation facilities, and new technological advances made it practical to display the system’s processing and knowledge graphically. GUIDON-WATCH (Richer and Clancey, 1985) and TRI (Dominque, 1988) and MCRDR/FCA (Richards, 2000) provide very general portrayals of the objects and reasoning processing of an expert system, making use of the improvements in the organization of the knowledge base. This type of graphic interface to an expert system’s processing is currently utilized in some commercial expert system development environments. Portrayals that depict system processing with abstractions of real-world objects are provided by simulation systems following in the tradition of SOPHIE (Brown, Burton and DeKleer, 1982) and STEAMER (Stevens, Roberts and Stead, 1983).

3.1.2.1 Views of System Reasoning

GUIDON-WATCH (Richer and Clancey, 1985) is a graphical facility designed for the GUIDON/MYCIN system. A variety of interfaces in GUIDON-WATCH (such as the Taxonomy window and the Diagnosis Task tree window) allow a student to browse through the knowledge base and view reasoning processes during diagnostic problem-solving. Using these multiple views, the student can monitor the problem-solving processes of the system, examine taxonomic and causal relations, and keep track of findings and hypotheses. The multiple windowing system and the multiple views enable the user to track the processing of the system more easily than could be done by the textual question and answer methods in earlier versions of the system.

TRI, the Transparent Rule Interpreter, (Dominque, 1988) is another such system. TRI is a system that provides a graphical explanation of forward chaining rule systems. Using a number of windows, TRI allows the user to view the execution trace of a system in varying levels of detail, from coarse-grained (e.g., rule traces) to more detailed (e.g., the antecedents and consequents of a particular rule). TRI is meant to assist in the maintenance of rule-based systems and is an improvement over simple rule traces and textual explanations based upon those traces.

Richards (2000) describes a system (MCRDR/FCA) based on ripple-down rules for classification that is designed to support the user in a number of activities such as knowledge acquisition, maintenance, tutoring, and explanation. The user has access to the rule trace, the “exception structure” of the ripple-down rule knowledge base (which helps record the history of the development of the knowledge base), a graphic representation of the concepts embedded in the rules and other views into the system’s knowledge base.

3.1.2.2 Simulations

Simulation systems depict abstractions of real-world objects and the response of the objects to user actions on them. In simulation systems, an exploratory environment allows the user to manipulate the graphic components depicted onscreen in order to experiment with the underlying simulation system. Observing the results of the manipulations should result in a better understanding of the functioning of the components of a system and the relationships among the components. The Cardiac Tutor (Eliot and Woolf, 1996), a tutoring system for the care of patients during heart attacks, continues and extends the approach of SOPHIE and STEAMER. This high-level simulation environment portrays a patient exhibiting various symptoms of cardiac arrest and undergoing treatments selected by the student. As with many simulation environments, the effects of actions are graphically displayed. Another simulation environment utilizing this approach is the Molgent Tutor in the domain of molecular genetics (Neiman and Woolf, 1997). One problem with many simulation environments is that often the reasons why certain actions cause certain effects are not communicated to the user of these systems. So, if the user does not understand a component or process, there are no means to address the misunderstanding with further or deeper explanations.

In a more abstract type of simulation, Cheng (1998) uses Law Encoding Diagrams (LEDs) in addition to animations in a tutor for elastic collisions in physics. LEDs are diagrammatic representations that capture the laws of a domain by means of their internal structure using geometric, topological or spatial constraints. These diagrammatic representations demonstrate how different values for variables affect each other and relate to the animation depicted. An example of animation provided by this system is a depiction of two objects of differing masses colliding with each other. Each diagram in this system represents a single instance of some phenomena or one case of a physical law. The diagrams are meant to bridge the gulf that exists between the symbolic mathematical representations and qualitative understanding.

Other simulation environments provide more pedagogical guidance in addition to the simulations. For example, the EDGE system, in addition to utilizing the natural language dialog capabilities described above in Section 3.1.1, uses diagrams of electronic circuits and simulations of both functioning and faulty circuits.

3.1.3 Multimedia Presentations

The utilization of more than one mode of communication in explanation facilities can greatly enhance the effect of the explanation just as the use of a diagram and text rather than a text passage alone can have a significant beneficial effect upon reader understanding. However, inclusion of multiple modes of communication greatly increases the amount and types of interaction knowledge needed. Not only do such systems require a significant amount of natural language knowledge, but they also require knowledge regarding how to choose the most effective media for communicating the content of the explanation, and knowledge regarding how to coordinate the media chosen. For example, if text and a diagram are both being used, it may be important that the text come before the diagram or vice versa.

Arens, Hovy and Vossers (1998) have addressed the knowledge types and processes required for multimedia presentations (not exclusively explanatory presentations). After extensive surveys of literature from psychology, human-computer interaction, natural language processing, linguistics, human factors and cognitive science, as well as their own previous work, they have categorized the knowledge required for multimedia presentations into four basic types:

1. the characteristics of the media used

2. the nature of the information to be conveyed

3. the goals and characteristics of the producer

4. the characteristics of the perceiver and the communicative situation.

Arens et al. provide more detail on each of these types of knowledge and note that these factors affecting multimedia presentations are not independent and must be considered in conjunction with each of the others. Other researchers in the area of multimedia have categorized the types of knowledge required in these systems in other ways and have incorporated varying amounts of this type of knowledge.

In the Sherlock system, Gott and Lesgold (2000) used “intelligent hypergraphics” to provide information to repair technician trainees without cluttering the display with information which may not be needed. Graphics initially display the level of detail that an expert’s vision of a trouble-shooting situation might contain. If the trainee wishes to have more information about any of the objects depicted in the representation, the trainee can click on any of the objects to obtain more detailed information or to reveal the components of an aggregate object.

The COMET system (Feiner and McKeown, 1990; 1998) is a blackboard-based system for maintenance and repair of military radios. Interaction with COMET begins with the user selecting the symptoms exhibited by a faulty radio from a menu. Explanations consist of the steps required to perform diagnostic tests to assist in the determination of the fault. The content planner of COMET determines what to say, and decides which information should be expressed in each medium. For example, the content planner decides which words and syntactic structures best express the portion to be conveyed in text, and which graphical object in which graphical style best expresses the portion to be portrayed graphically. A blackboard system facilitates coordination between the graphics and text generators and also assists with issues such as the coordination of sentence and page breaks and cross-references between text and other media. Planned extensions to COMET will allow the portrayal and coordination of temporal events and durations using temporal media like animation and speech.

Bares and Lester (1997) incorporate 3D animations in pedagogically customized explanations of plant cell components and their behaviors. In response to a user question, the RAPID explanation system selects 3D models and relevant behaviors, determines which views and angles most clearly depict the behavior, and synchronizes narrative utterances with the visual elements. When planning explanations, a large number of concerns (e.g., visual focus, pedagogical chunking of complex concepts into visual chunks, time to be allotted for user comprehension, and “camera movements”) are all taken into consideration in the planning of explanations.

Maybury (1992, 1995, 1998) has examined the parsing of multimodal input, as well as the generation of multimodal output. For most computer systems, input is accomplished via keyboard, mouse and perhaps microphone, while output modes include natural language text, graphs, tables, images, video and audio. TEXPLAN (mentioned earlier in Section 3.1.1) was expanded for multimedia input and output. In considering what sort of knowledge is needed for such a system, Maybury expanded the taxonomy of communicative acts proposed by Searle (1969) to include linguistic, graphical and physical actions. Maybury says that some classes of actions can be defined in a media-independent form and then be specialized for particular media. For instance, the problem of pronoun reference in natural language understanding is well known. Deictic actions are an example of a graphic reference action specialized for graphic media. Just as referents in textual or spoken language require resolution, referents for graphic actions must also be resolved so that when a user asks “What is this?” and has placed the mouse cursor over a canopy of trees in a rain forest, the system should be able to determine whether the user is asking about a particular leaf, tree or the forest itself.

The most sophisticated type of multimedia explanation might be those systems that employ animated pedagogical agents such as Herman the Bug (Lester, Stone and Stelling, 1999). Herman the Bug is a cartoon character who provides problem-solving advice to children using the system called Design-A-Plant which Herman the Bug inhabits. In Design-a-Plant, children assemble customized plants that will thrive in a given set of environmental conditions. Herman the Bug observes the users’ interactions and provides explanations and hints while performing a broad range of actions, such as walking, flying, jumping or even tapping his foot when a user is taking a long time to make a selection. Johnson, Rickel, and Lester (2000) provide a review of other animated tutoring systems and the types of communication knowledge needed for this type of interaction. [image: image10.png]

3.1.4 The Knowledge Behind These Systems

Systems representing the “state of the art” in explanatory interaction have been described in the preceding subsections of Section 3.1. As indicated, there are a large number of concerns regarding the knowledge required to respond effectively to user questions. Upon examination of these systems, it becomes apparent that for the systems that display the most impressive natural language and multimedia interaction capabilities, the primary focus of the work was on the discourse, dialogue and presentation knowledge and the mechanisms developed that utilized this knowledge. Regardless of what form the presentation of the information takes, no knowledge or information can be communicated to the user unless it is explicitly represented in the system or can be inferred from the system’s knowledge of the topic, domain or task. For the most part, the systems described above that exhibit the most sophisticated presentation capabilities have static knowledge bases that are specifically tailored to that type of interaction within that type of domain.

For example, KNIGHT can answer questions such as “What happens during embryo sac formation?” and “What is a spore?” because of the underlying hierarchical frame representation of this type of knowledge. The links of the frame-based hierarchy are usefully labeled to support the generation of explanatory paragraphs. Some of these labels include part-of, contains, subevent, location, formed, formed-from and specialization-of. This specific knowledge representation for botanical knowledge permits the system to generate explanatory paragraphs such as those in Figure 2 in Section 3.1.1. The botanical knowledge base does not perform problem-solving tasks within the domain. It is highly detailed, but it is static.

In EDGE, Cawsey focuses on tutorial explanations of how electronic devices function. The knowledge in the system is designed to effectively represent those devices, their subcomponents, their functions, their behaviors, and which devices are considered to be analogues of each other. This type of knowledge is primarily static.

In COMET, Feiner and McKeown (1998) generate multimedia explanations for the diagnosis of military radio repair problems. While there is an expert system that performs problem-solving and recommends which diagnostic tests should be performed, the multimedia explanations of the system do not explain aspects of the problem-solving episode with the expert system component. Rather, the multimedia explanations describe how to conduct the diagnostic tests recommended by the expert system. The knowledge required for these explanations focuses on explaining the steps necessary to perform some test. This sort of knowledge includes the information necessary to decide if both text and graphics should be used to explain a process and to decide which verb to use based upon the action that is to be performed. For example, the knowledge base knows to use the verb press if the medium to be manipulated is a button, and to use either push or move if the medium is a slider. Again, this type of knowledge does not change with each problem-solving episode.

In summary, there are two important points to be made. The first addresses the knowledge representations in these systems. In many of the systems that demonstrate some of the most impressive forms of interaction, the knowledge base is highly detailed and is tailored specifically to support these interactions. Because of the degree of specificity, the representations and mechanisms developed are often not extensible to other problems in the same domain or to other domains. Each system took a considerable amount of time and effort and it is unfortunate that the explanation facilities cannot be re-used except in those cases where the problems or the domain can be fitted nicely into the representations chosen for the original system.

The second point addresses the problem-solving abilities of these systems. What is important for the purposes of this work is that with the exceptions of very general systems such as TRI and GUIDON-WATCH, the knowledge contained in the explanations of these systems is based on a static knowledge base rather than more dynamic problem-solving processes. When dealing with systems based on static knowledge bases, barring questions that are outside of the scope of knowledge of the system, the system is unlikely to be faced with a situation that it cannot handle. This is not the case with systems that reason dynamically because some of the knowledge utilized by the system may be changed or deleted during the problem-solving process. Explanations in systems of this genre are reviewed in the next section.

3.2 Current Trends in Knowledge Representations for Expert Systems and Explanation of Dynamic Reasoning

The previous section reviewed a wide range of explanation facilities, most of which were designed and built to produce high quality natural language and/or multimedia explanations. The primary focus of the majority of those systems was on the interactive capabilities. The knowledge described in the literature on those systems reflects this focus. That is to say, the knowledge in those systems was often static and designed to support the interaction desired. Another branch of research that has addressed explanation in intelligent systems concentrates on knowledge representations for problem-solving systems that facilitate many activities from knowledge acquisition to maintenance to explanatory interactions with the end user. This section contains a review of research into domain knowledge representation for systems that perform some type of problem-solving task and also interact with users who request explanations and justifications of the problem-solving processes. In many ways, these systems extend the lessons learned in some of the early systems, such as MYCIN and XPLAIN (Swartout, 1983), both in terms of explicitly representing different types of knowledge and in terms of including knowledge beyond what is required for the reasoning processes of the system. For these so-called “second generation expert systems” (David, Krivine and Simmons, 1993) there is a shift from modeling only the expert’s knowledge to modeling the domain and necessary world knowledge as well. These different types of knowledge may not be necessary for the reasoning processes of the system, but are added to support knowledge acquisition, validation, maintenance and explanation. These systems are sometimes quite complex and may utilize both multiple representations and multiple reasoning methods rather than using a single-level collection of rules from which the intended behavior is expected to emerge (e.g., the original version of MYCIN).

To facilitate the knowledge acquisition and modeling processes of these systems, a variety of generic models or primitive constructs have been proposed. Efforts at facilitating the knowledge acquisition and modeling processes by providing re-usable knowledge, frameworks and/or environments that guide the process can be divided into two general categories. First, there are the efforts based on models of the task that the system is to perform. Second, there are efforts to provide ontologies for the representations of objects, concepts, events, etc. and the relationships among them. These categories are not disjoint and overlap in significant aspects. For example, the task frameworks have means of representing “ontologies” of the objects and concepts of the domain.

3.2.1 Task or Problem-Solving Frameworks

The concept of generic re-usable problem-solving methods has been advanced in several frameworks. These systems are based on pre-defined models of problem-solving methods or tasks. Some early systems (e.g., MORE, Kahn, 1988; MOLE, Eshelman, 1988; SALT, Marcus, 1988; OPAL, Musen, 1987) were based on one particular problem type and one problem-solving method for that type of problem. A number of ITSs have adopted the single problem-solving architecture. For example, Bell (1999) describes an authoring tool for an intelligent tutoring system that represents domain knowledge and pedagogic knowledge for “Investigate and Decide Learning” environments. In this system, the word “investigate” is defined as a three-step process of obtaining a sample, analyzing it and interpreting the test results. Other examples of this type of framework are Belvedere (Toth, Suthers and Weiner, 1997; Paolucci, Suthers and Weiner, 1996), in which students locate predefined nodes that support or disprove some phenomenon or hypothesis, and Smithtown (Shute, 1990), an economics tutoring environment.

More current non-ITS environments provide the developer of an expert system with a number of choices from a variety of problem-solving methods or tasks (e.g., Generic Tasks, Chandrasekaran and Johnson, 1993; CommonKADS, Schreiber, Wielinga, de Hoog, Akkermans and Van de Velde, 1994; the components of expertise, Steels, 1990; Generalised Directive Models, Terpstra, van Heijst, Shadbolt and Wielinga, 1993; EES, Swartout and Moore, 1993). In these systems, the method or task chosen provides conceptual models for the knowledge that will be needed by the system and guides the knowledge acquisition process.

3.2.1.1 The Generic Task Framework

Chandrasekaran et al. (Chandrasekaran and Johnson, 1993; Tanner, Keuneke and Chandrasekaran, 1993; Tanner and Kueneke, 1991; Josephson, Chandrasekaran, Smith and Tanner, 1987; Chandrasekaran, 1986) use the terms “task”, “method” and “operator” to define a variety of problem-solving types. The term “task” is used to refer to a set of problem instances that are of the same basic type. For example, diagnosis is a task in which the goal is to figure out why a system is behaving abnormally, regardless of whether the system in question is a machine or a person. “Methods” are the means of accomplishing tasks and are defined by the operators used and the objects manipulated. The “operators” represent the subtasks of a method and, as such, may have their own methods. For example, in the Generic Task framework, the task of diagnosis is further defined and “associated with a generic method called abductive assembly, which in turn sets up a subtask of hypothesis generation” (Tanner, Keuneke and Chandrasekaran, 1993).

According to the authors of this framework, the Generic Task approach provides several advantages by pre-identifying the roles that knowledge plays (in terms of tasks), providing a vocabulary to guide the knowledge acquisition, and reducing the computational complexity by ensuring that the right sorts of knowledge are available for the task. Explanations are facilitated because the types of knowledge, such as strategic knowledge, are made explicit and are built into each task and method.

3.2.1.2 The Components of Expertise Framework

The components of expertise framework (Steels, 1990) is similar in many ways to the Generic Task concept. Steels’ framework for constructing knowledge-level models is based on three perspectives: (1) the model perspective, (2) the task perspective and (3) the method perspective. The model perspective is an abstraction representing those aspects of reality that describe the underlying knowledge required to perform a task. The task perspective represents the things that need to be accomplished. Tasks may be broken down into subtasks and there may be relationships between tasks. The method perspective specifies how tasks are accomplished. Methods in this framework are algorithms containing activities and the means to control the activities. Steels (1993) provides a “workbench” environment that assists developers in acquiring the models, tasks and methods.

3.2.1.3 CommonKADS

Wielinga, Van de Velde, Schreiber and Akkermans (1993) developed the CommonKADS system, which is an extension of KADS (Knowledge Acquisition and Design System, Wielinga, Schreiber and Breuker, 1992). KADS places emphasis on tasks which are iteratively decomposed into subtasks until some basic inferences can be applied. KADS does not provide predefined problem-solving methods or tasks, but it does make distinctions between the types of knowledge required for a task. The different types of knowledge are distributed in layers representing the strategic, task, inference and domain knowledge needed for the system. All of the upper layers of knowledge, with the exception of the domain layer, should be domain independent and therefore potentially usable for similar problems in different domains. In CommonKADS, the domain layer is more detailed than it is in KADS and a library of problem-solving methods is included. The ontology structures provided in the domain layer include an ISA hierarchy, a PART-OF hierarchy, a causal network, definitional knowledge and the means to represent relationships between concepts.

3.2.1.4 Generalised Directive Models

Terpstra, van Heijst, Shadbolt and Wielinga (1993) have also utilized the KADS methodology but have extended it with a library of “generalized directive models” (GDMs). This library provides three inference structures that can be used depending upon the task at hand. The three types of top-level tasks are analysis, synthesis and modification, each of which has subcategories based on solution types. Once a developer selects a GDM, constraints are placed on the type of knowledge that is elicited. Similar to the other problem-solving frameworks, the benefit is that the predefined inference structures provided by the GDMs can be utilized to guide knowledge acquisition and to improve explanations.

3.2.1.5 EES

Swartout and Moore’s EES (Explainable Expert System) (1993) is an extension of an earlier system called XPLAIN (Swartout, 1983). EES extends XPLAIN’s knowledge base, which consisted of domain principles and a domain model, by adding terminologic knowledge and a library of problem-solving plans. An automatic programmer assists in reformulating the abstract plans into more specific plans and records the reformulations utilized in this process. The control knowledge (which is represented at an abstract level by the plans), the recorded design history, and the broad range of knowledge supported by the knowledge base, provide the basis for quite robust explanation facilities.

3.2.1.6 Explanations in Task or Problem-Solving Frameworks

Due to the explicit representation of problem-solving and domain knowledge, the explanations of problem-solving episodes that can be derived from these frameworks are considered to be more coherent and relevant than those of early expert systems. For example, the DIVA system (David, Krivine and Ricard, 1993) performs diagnostic tasks for turbine generators and is largely based upon the Generic Tasks framework. In DIVA, “How?” questions are answered without the inclusion of unnecessary details by focusing on the methods available for a task, which of these methods were attempted and which methods eventually succeeded. However, because the focus of this system was not on communication knowledge, it does not generate fluent explanatory paragraphs such as those of the KNIGHT system, nor does it maintain natural sounding dialogs as does EDGE (both described in Section 3.1.1).

More examples of explanations in systems utilizing the Generic Tasks framework are provided by Tanner, Keuneke and Chandrasekaran (1993). Both systems described have a multi-level architecture with “specialists” responsible for specific portions of a task. Each specialist, each plan and each step in the system have slots for the attributes that they assign, the purpose of each plan or step, and what exactly each achieves. The latter two slots contain text strings that can be incorporated into explanatory sentence templates. Tanner et al. also describe the utility of using additional models that contain explicit causal knowledge based on functional representations. In the system described by Tanner et al., the causal model is used to justify and validate a diagnosis made by the problem-solving portion of the system.

Müller and Sprenger utilize the explicit knowledge levels of KADS to assist explanation facilities in an application that assigns employees to offices. The explicit knowledge levels of KADS (strategy, task, inference, and domain levels) are utilized to help determine what parts of a rule trace are most relevant and should be included in an explanation. Knowledge in the domain layer might be used to provide concept definitions or comparisons. Knowledge regarding the role a concept plays in the inference layer might be used to answer a “How?” question, and knowledge in the strategy layer might be used to explain a general problem-solving method.

3.2.1.7 Criticism of The Task and Problem-Solving Frameworks

Critics of these frameworks have a number of concerns, some of which do not relate directly to explanation. One such concern is that system developers will have a tendency to force-fit a problem into one of these frameworks, even when the framework is not appropriate for the problem (Rademakers and Vanwelkenhuysen, 1993). This problem is reminiscent of a phenomenon described by Waterman and Hayes-Roth (1983) regarding the use of expert system shells available at the time. They found that expert system developers tended to utilize the development environment with which they were most familiar, even when the problem at hand contained characteristics that could not be represented in that environment. Those characteristics of the problem that were difficult to represent tended to be ignored. Rademakers and Vanwelkenhuysen predict that similar phenomena will occur with the use of the task frameworks described above.

 A concern directly relating to explanations in these frameworks is the use of separate knowledge such as static text strings and separate causal models for explanation. The use of text strings which are not interpreted by the system, and/or the use of knowledge which is separate from the knowledge used in the reasoning process (such as a separate causal model), raise concerns reminiscent of the problems regarding the early use of canned text for explanation. The use of canned text was not considered a good solution to the problem of explanation because, as the system is updated, there is a tendency for the knowledge in the system and that contained in the explanatory text to become inconsistent, resulting in inappropriate or incorrect explanations. Similar problems may occur with any explanation that is based on knowledge or data that is separate from the knowledge of the expert system itself.

Another criticism in terms of explanation facilities constructed for applications of these frameworks is that the explanations described are tailored specifically to the application. For example, in the DIVA system mentioned above, the explanations in the system are limited in that they are only applied to certain tasks. Therefore, not all of the parts of the reasoning process are explainable.

One last criticism of these frameworks that might be directed towards the explanation facilities of the systems in this section is the general coarseness of the interactions. But, as mentioned in the introduction, no one system has managed to focus on all of the many aspects and types of explanations.

3.2.2 Ontological Frameworks

The knowledge-modeling frameworks of the last section can be considered ontologies of problem-solving methods. This section presents a review of research in the development of re-usable general ontologies for representing objects and concepts in knowledge based systems. The current work on sharable ontologies is different than the early efforts in knowledge representation such as KL-ONE in that the more recent efforts are “content rich”, having a large number of terms that embody a complex content theory of a domain (Chandrasekaran, Josephson and Benjamins, 1999).

The word “ontology” was borrowed from the field of philosophy, where it refers to a systematic account of existence. In many cases in the AI field, the word “ontology” refers to that knowledge of a domain, which is represented by a particular development environment for a particular application. In this sense, the static knowledge bases of the systems reviewed in Sections 3.1.2 and 3.1.3 could be referred to as ontologies and the task frameworks described in section 3.2.1 could be thought of as task ontologies. However, “ontology” can also refer to research efforts that are attempting to determine the categories necessary for any intelligent computational system, in the hope that a repository of real-world knowledge, including general ideas such as time, space and causality, could be constructed and made available to developers of intelligent systems. These sorts of efforts are more closely related to the original philosophical meaning of the word.

The problem-solving frameworks in the previous section were primarily directed towards environments and generic representations that promoted more efficient development and modeling of expert systems. While explanation does not appear to be a chief objective in those systems (with the exception of EES), the generic representations of problem-solving methods provided the basis for more meaningful explanations. Similarly, the main objective of most of the systems reviewed in this section is the development of sharable, re-usable representations and knowledge to facilitate all types of interactions with the system, including explanation.

The research reviewed in this section is divided into two main categories. The first category is represented by those efforts aimed at representations of explicit, concrete or domain-specific knowledge, which might be used by many different systems. Included here are Cyc (Lenat and Guha, 1990; Cycorp, 2001) and the Ontolingua server (Farquhar, Fikes and Rice, 1997). The second category is represented by those efforts aimed at more abstract and general representations, such as those suggested by Hobbs (1995).

3.2.2.1 Explicit, Concrete and Domain-Specific Knowledge Representations

The best-known effort at constructing a knowledge base designed to be accessed and used by multiple disparate systems is the Cyc effort (Lenat and Guha, 1990; Cycorp, 2001). The Cyc knowledge base contains millions of facts in tens of thousands of categories, relations, heuristics and problem-solving methods. The hope is that Cyc will serve as the foundation for new work in intelligent systems, natural language understanding and machine learning, as well as help to resolve the brittleness problem of many intelligent systems.

In contrast, the Ontolingua group (Farquhar, Fikes and Rice, 1997) has designed a language to construct re-usable portable ontologies. The Ontolingua server provides an environment accessible over the World Wide Web where developers can create, edit, publish and browse ontologies stored on the server for access by others. The claim is that developers can quickly create ontologies from a library of different modules created previously by other system developers. Once an ontology is developed for a specific application, the server can then translate the developed ontology into one of a number of different problem-solving knowledge representations or into a basic object-oriented language such as CLOS.

These efforts have some critics. For example, some critics question the basic categories decided upon for Cyc and say that the thousand of years that philosophers have spent on the subject of ontologies should be utilized (e.g., Sowa, 1995; Smith, 1995) or that the basic categories should be drawn from the information known to be necessary for natural language communication (e.g., Bateman, 1995). Other critics contend that the knowledge representation for any one system is highly dependent upon the purpose and reasoning processes of the system and that ontologies that are developed for one system will not transfer readily to another (O’Leary, 1997).

3.2.2.2 Abstract Representations

Hobbs (1995) proposes a quite different conceptualization of the world based upon his work in natural language. His conceptualization consists of a set of very abstract core theories upon which the definitions of words can be based. The core theories he suggests include the concepts of system, figure-ground relation (e.g., an external figure moves or is based on some system which serves as the ground for that figure), time, scales, causality, and goal-directed behavior. He claims that providing these core theories, which are so widely applicable, will furnish a rich vocabulary to use in a great many domains.

3.2.2.3 Explanation Using Ontologies

For the most part, the research into ontologies for intelligent systems has been applied to the problem of explanation only indirectly. If the word “ontology” is taken to mean the knowledge of a specific domain, then many of the systems reviewed earlier in Section 3.1 could be cited here. For example, most of the problem-solving frameworks in the last section contain a concept hierarchy or object hierarchy (ontology), which may be used for explanations. When very detailed knowledge of a particular domain is included in a system, explanation facilities can be designed to take advantage of the knowledge available. For example, the KNIGHT system (Lester and Porter, 1997) reviewed in Section 3.1.1 is an example of a non-problem-solving system which utilizes an extensive highly detailed semantic network to produce high quality explanatory paragraphs in the field of botany. CYCLEPAD (Forbus and Whalley, 1994; Forbus, Everett, Ureel, Brokowski, Baher and Kuenke, 1998) is a system for learning engineering thermodynamics by designing thermodynamic cycles. CYCLEPAD uses knowledge of components (such as boilers, turbines and condensers) and includes knowledge of their roles in the type of cycle being designed. For example, one type of component may be used as a heat-exchanger or more simply as a means to join two flows. The knowledge of the role a component plays in a thermodynamic cycle can be used in explanations when the system is analyzing and critiquing a user’s design. The knowledge in these domain-specific systems regarding botany and thermodynamic components respectively can be characterized as ontologies of those domains.

The more abstract use of the term “ontology” could apply to the augmentation of the basic concept hierarchy of an expert system shell for educational explanatory purposes (e.g., Valley, 1992). The explanation facility described by Valley can answer template-based questions regarding the description of an object, the relationships between two objects or comparisons between two objects.

The general abstract core theories proposed by Hobbs (1995) have some similarities to explanation facilities proposed by Maybury (1995) and Metzler and Martincic (Martincic, 1996; Metzler and Martincic, 1995, 1998a, 1998b; Martincic and Metzler, 1995, 1999), some of which could be interpreted as attempts at implementations of Hobb’s concepts of systems and scales. Maybury considered the use of saliency values and a number of comparisons that could be made between objects, such as numeric, geometric or hierarchical distances. He developed a “differentia” algorithm based on the experiments of Collins and Quillian (1969), and Rosch (1973), and Tversky’s (1997) set theoretic approach to object similarity. The algorithm is based on numerical measures such as the prototypicality of a given attribute and the discriminatory power of an attribute. He demonstrates the use of this algorithm to select the content for explanations that use one of three rhetorical strategies to compare and contrast entities.

Metzler and Martincic have proposed somewhat similar uses of numeric scales and evaluative continua for symbolic values, along with constraint relaxation mechanisms to be utilized in explanations of particular types of question about the reasoning processes in rule-based expert systems. The additional mechanisms and knowledge are designed to be used in answering a variety of questions, including the “Why not” type of question. The purpose of the mechanisms in the case of “Why not?” questions is to provide more informative explanations about the failure to reach a user-anticipated conclusion by assisting the user in tracing backwards through a failed line of reasoning and by locating the closest matches possible to the user’s expectations. The amount of relaxation necessary to meet the user’s anticipated conclusion reflects how close the system may have been to that conclusion. Knowledge regarding how to find reasonably close matches is represented in additional knowledge structures and utilized by the mechanisms provided.

3.3 More Questions – Why Not?

It is clear that advances in both the communicative knowledge and the types and representations of domain knowledge have led to impressive achievements in the quality of explanation facilities that answer questions beginning with “What”, “Why” and “How”. However, there are other types of questions that have received only minimal attention, even though there is evidence that they are asked in human requests for explanation. One of these types is the “Why not” sort of question which asks why the system did not come to a user-anticipated conclusion (Richards, 2000; Gregor, 2001; Martin and Mitrovic, 2000; Ellis, 1989; Kidd, 1985).

The “Why not” type of question is considered more difficult for computational systems to answer than the other types of questions whose answers originate from the knowledge base or reasoning path of the system. There are some cases in which the answer to this type of question is relatively simple. One such case is when there is a single rule or operator that specifically concludes the user’s expectations, and the reason regarding why the rule or operator failed to produce the user’s expected result is easy to discern. However, if there is more than one rule that will lead to the user’s expected conclusion, if the relevant reason for the failure occurred in an earlier point in the reasoning process, or if the relevant reason is some interaction of values between objects, the answer becomes a complex conjunction of all of the ways in which the various sets of conditions of the rules have failed to be satisfied. Even in simple intelligent systems, such an answer may be far too complex to be expressed in its entirety.

There have been some systems that have addressed this type of question. Some have done so in a relatively indirect manner. For example, in the Sherlock system (Lesgold and Nahemow, 2001; Gott and Lesgold, 2000), a training system for avionics electronics technicians, a post-problem-solving reflective session of the system provides the expert system’s solution path and a critique of the technician’s problem-solving pathway. The technician is asked to critique his own reasoning path using a list of good troubleshooting principles. The technician is then shown which principles were violated along his solution path and where they occurred. For example, if the safety requirement principle was violated, the steps taken by the technician that violated this principle will be listed. This part of the system can be interpreted as encouraging the technician to reflect on why an action should not have been taken.

Systems that have been designed to answer “Why not” questions in a more direct fashion do so for the most part, by limiting the possibilities in some fashion. Some older systems that are based on a single problem-solving type could handle this type of question because of the discreteness, specificity and predefined roles of the knowledge in the system. For example, SALT (Marcus and McDermott, 1989) was a knowledge acquisition facility for systems that solve design-by-propose-and-revise problems. A dependency network provided the basis for the explanation facility, which was augmented by records of the constraint violations that occurred during problem solving. If the user asked a “Why not” question and the user’s expectation was possible, but not preferred, SALT reported the value that was preferred as well as the other constraints involved in the system’s choice. If the user-anticipated result was not possible without a change in a value occurring earlier in the reasoning, SALT reported the value that would have to be changed in order to conclude the user’s choice.

In TEIRESIAS (Davis, 1979), another system designed to be used during knowledge acquisition, models of the rules are constructed by a simple form of concept formation. When presented with a user expectation, TEIRESIAS responded with the rule that led to the system’s result and asked the user (a system developer) what clause should not have been met so that the rule would not have been able to fire. It then attempted to assist the user in the editing of the current rule or the construction of a new one. In both SALT and TEIRESIAS, the clauses of the rule antecedents are primarily discrete values (out of a limited set of possible values) and there is little interaction among the clauses of the rules. However, in many expert systems the clauses and the rule antecedents can be more complex (Section 4.1). In these systems, deciding what led to the rejection of a user expectation may not be a single discrete value, but rather an interaction of antecedent constraints or a long chain of rule firings.

More recent systems that address this type of question make use of additional knowledge or particular characteristics of the reasoning environment but are still subject to limitations of the earlier systems. These more current systems include DIAMOD (Müller and Sprenger, 1996), DeBrief (Johnson, 1994) and DIVA (David, Krivine, and Ricard, 1993).

In DIAMOD, a separate resolution type of procedure is employed for answering “why not” questions. The user’s expectation is added to the knowledge base and the steps taken to achieve the resulting contradiction are used in the explanation. There appear to be limitations with this procedure for answering “Why not” questions. First, the application utilizes a set of discrete values and therefore is subject to some of the same limitations of the earlier systems mentioned above. Second, it assumes that the user’s expectation will produce a contradiction, and does not address cases in which the user’s expectation may be an acceptable alternative solution. Overall, it would appear that further use of the explanation facility would be limited to other assignment-given-constraints types of problems.

DIVA and DeBrief both limit explanations to particular tasks or operators respectively. DIVA is based upon the Generic Tasks framework. In response to “Why not” types of questions (e.g., “Why didn’t you consider situation Y?”), DIVA reports the value which caused “situation Y” to be rejected. This procedure assumes that there is a value in the knowledge base that causes such a rejection.

The primary objective of DeBrief, which is implemented in Soar (Newell, 1990), is the development of technology that helps Soar-based problem-solvers learn to explain their actions. DeBrief determines the motivation for a decision by recalling the situation in which the decision was made, and experimenting with variants of the situation. The developer of the system must identify operators that make decisions or implement actions that may need to be explained. As the reasoning progresses, DeBrief uses Soar’s chunking mechanisms to record both the situations in which a pre-identified operator was applied and all of the changes that occurred since the last such operator was applied. Whenever the mental simulation of a past situation is used for explanation, a chunk is created. Such a chunk is then used in similar explanation requests.

[image: image11.wmf]

ERD

-

QUE

QUE

Inference Engine

Knowledge Base of Rules and

Objects

Context

Mechanisms

Relaxation

Mechanisms

Problem Presentation and

Question Asking Facilities

In DeBrief, “Why not” types of questions are limited to a predefined set of operators and to representations that appear to be discrete in nature (e.g., “bogey is hostile”). The dependence on discrete, predefined values excludes the use of representations that utilize more complex values such as those that vary continuously or those that may include complex objects as the slot values of other objects.

Metzler and Martincic (1998a; 1998b; Martincic and Metzler, 1999) have developed a framework (QUE – QUerying the Expert) that would overcome these limitations. Just as answering questions of the “Why”, “What” and “How” types required more information and more explicit representations of knowledge, answering “Why not” questions can be improved by including other types of knowledge in the system. They propose a set of representations and mechanisms that facilitate explicit representation of ranges, intervals and evaluative continua that will assist the system in limiting the number of possible alternatives, which is a problem with this type of question (see Section 4.1). QUE is the foundation of this dissertation work and is discussed in detail in Section 4.

3.4 Summary and Relation to This Work

There has been much research into explanation facilities for intelligent systems and each line of research has been directed at different aspects of the concept of explanation. Impressive achievements have been made by increasing the amounts of knowledge in the system, by incorporating more detailed representations and by expanding the types of knowledge provided in the system. There are primarily two types of knowledge required for explanation. One is communication knowledge regarding the type of interaction available or desired, and the other is domain knowledge, including knowledge of the dynamics of the problem-solving activity. It has been long recognized that the amount, the types and the explicit organization of the domain knowledge is important for explanation. Just as this recognition improved the quality of “Why” and “How” types of questions, it is anticipated that the same is true for other types of questions. One question type that has not been addressed to any great extent is the “Why not” type of question which is the major focus of the work detailed in the following section. This work is more closely aligned with the research in Section 3.2 because it deals with questions about problem-solving processes, rather than the communicative aspects of question asking and answering.

The mechanisms and overall environment developed are demonstrated in a problem-practice environment that might be associated with an intelligent tutoring system (ITS). It may appear to some that the choice of application in which to demonstrate the mechanisms are at odds with the research reviewed in Sections 3.1 and 3.2 since more of the systems reviewed in Section 3.1 (on the communicative aspects of explanation) are ITSs than are those in Section 3.2 (on knowledge representation for problem solving). More specifically, many of the ITSs reviewed in Section 3.1 lacked an expert system module and those ITSs mentioned in Section 3.2 (for the most part) had an expert system module that could represent knowledge of only one specific problem type.

The way that ITSs fell into the two broad categorizations of research into explanation facilities reflects a shift in ITS research. Much of the current work in the field of intelligent tutoring systems has shifted away from the early standard ITS architecture (which included an expert system module, a pedagogic module and a student model) to architectures that are primarily concerned with pedagogical knowledge such as curriculum sequencing or tutoring strategies (Mizoguchi and Bourdeau, 2000; Van Labeke, Aiken, Morinet-Lambert and Grandbastien, 1999) and tutoring dialogs (e.g., Person, Graesser, Kreuz, and Pomeroy, 2001; Porayska-Pomsta, Mellish and Pain, 2000). There are several reasons for this shift. They include the time and expertise involved in creating the expert system module and maintaining the student model. This current ITS approach, which is primarily focused on pedagogic knowledge and/or communicative knowledge, does not lend itself to flexible explanations of the domain knowledge or of problem-solving episodes. For the most part, the domain knowledge in these ITSs is shallow in that the content knowledge of the ITS is stored in canned text, graphics, audio and/or video clips. The “intelligence” in these systems is present in the knowledge of when and how to present static summaries, examples and explanations. While there is a definite need for this type of knowledge in tutoring systems, there are limitations to this type of environment. As Murray (1999) notes, the students using these systems learn by reading and thinking rather than by doing. While the former type of learning environment (reading and thinking) is beneficial for certain types of knowledge in certain domains, actual problem practice (doing) is beneficial in domains where the development of problem-solving skills is desired. The mechanisms developed in QUE could prove to be of assistance in explanation facilities for those types of systems.

The domain chosen for demonstration of the mechanisms developed is the construction of entity relationship diagrams for database design. ITSs for this problem domain have been developed, but the focus of these systems is significantly different than the focus of this work. Gordon and Hall (1998) developed a virtual learning environment for entity relationship modeling in which the goal was to utilize the Multi-User Dimension (MUD) paradigm as a means of collaborative learning. Constantino-Gonzalez and Suthers (2000) focused on coaching as well as collaboration in COLER. The software coach notices differences between user diagrams and encourages students to address those differences.

Section 4.3 describes ERD-QUE, which allows users to explore difference between entity relationship diagrams, one of which is a depiction of an expert system’s processing. Much of the general architecture of ERD-QUE is domain independent, but use with another domain would require the development of a domain specific knowledge base and some changes in the interface design.

4. Research Approach

The work performed for this dissertation is a continuation of earlier work done in a partially implemented system called QUE (QUerying the Expert). The main objective of QUE is the investigation of domain-independent means of answering “Why not” and “What if” types of questions, which cannot be answered directly from the traces of the reasoning processes of an expert system. QUE is designed to work within the rule- and object-based production system architecture. It is domain independent in that it can be applied to any reasoning system within this architecture.

The dissertation work detailed in this section focuses on the development and demonstration of some of the basic mechanisms designed for QUE in a specific application. The general class of application to which this application might belong is that of intelligent tutoring systems, particularly those that provide an intelligent practice domain as opposed to those that only explicitly tutor domain material. The specific application developed provides problem practice for entity relationship diagrams (ERD) and is referred to as ERD-QUE. ERD-QUE utilizes a subset of the concepts planned for and implemented in QUE for handling “Why not” types of questions adapted to this specific application, and required the design and implementation of three major components.

Two of the components support the specific problem practice environment (ERD-QUE) only (Figure 6). These are the expert system (a set of rules, class definitions and objects) that produces a solution to ER problems and the problem practice framework for presenting the problems and providing access to the underlying facilities. The problem practice framework required a multi-window interactive environment with means to view the problem description and the diagrams and to access the QUE mechanisms via question templates. The question templates are domain dependent since the user initiates a question session with ERD-QUE from one of two entity-relationship diagrams. The system responses and functions for follow-up questions are components of QUE and are domain independent.

The expert system used in ERD-QUE is capable of producing constructs representing entity-relationship diagrams from logic-like representations of a textual problem description as well as background knowledge that the user could be assumed to know and apply in particular situations. The expert system implemented is not comprehensive but is able to construct reasonable ER diagrams for a variety of situation descriptions and is sufficient for demonstrating the functionality of the tools designed for QUE.

[image: image12.wmf]

If the bogey is a

contact

and the bogey is

hostile

and ROE is

achieved

Then

employ weapons

The third major component is the re-design and re-implementation of the QUE facilities to be used with ERD-QUE. The general ideas behind QUE are domain independent and can be utilized with any expert system written for its forward chaining inference engine. Utilizing these general ideas for a particular purpose such as ERD-QUE requires choosing which QUE mechanisms to use, possibly tuning those mechanisms for that purpose and designing a reasonable user interface suitable for that purpose. Consequently, any particular use of the basic QUE mechanisms requires a significant effort.

Different users with varying levels of domain knowledge, varying levels of experience with the expert system, and varying purposes and foci require multiple interfaces and views into the knowledge base of an expert system (Hendler and Lewis, 1988; Stelzner and Williams, 1988). The goal of the QUE system is to extend the utility of the basic “transparent system” concept (e.g., Richards, 2000; Wickler, Chappel and Lambert, 1993; Domingue, 1988; Baroff, Simon, Gilman and Shneiderman, 1988; Richer and Clancey, 1985) (see Section 3.1.2.1) by providing facilities for a user to explore the more dynamic aspects of explanatory mappings between the user’s information need and the processing of an expert system.

The mode of interaction provided in QUE is similar to the types of interactions available in systems such as GUIDON-WATCH (Richer and Clancey, 1985), TRI (Domingue, 1988) and MCRDR/FCA (Richards, 2000) in which the users take on active investigatory roles in order to determine the answers to their questions. It also approximates the style of interaction provided by some current expert system development environments, although QUE provides information beyond that contained in such systems. Rather than trying to handle full models of natural language query understanding, dialog maintenance and response generation, the approach taken is one that provides the means for the user to explore the system’s reasoning processes and knowledge base. QUE extends the capabilities of expert system development environments by including mechanisms that assist in the understanding of discrepancies that resulted in “Why not” and “What if” questions from the user. It is anticipated that the mechanisms developed for QUE could be utilized in answering these types of questions in systems with more sophisticated interactions (e.g. natural language or multimedia presentations) in the future.

In order to achieve its objectives, QUE provides a number of functionalities and views into the system’s knowledge base and reasoning processes. These include:

· views of the knowledge base and of the reasoning path taken by the underlying system.

· the ability to explore hypothetical reasoning paths by changing the knowledge structures at various points in the reasoning process and investigating the results.

· methods for investigating why conclusions were not reached and how close the system could have come at various points in the reasoning process to these conclusions of interest.

Because the mechanisms of QUE operate at a relatively low level, the mechanisms have the potential to provide assistance to a wide range of users in a wide variety of situations including knowledge acquisition, maintenance, tutoring, critiquing and explanation. QUE is designed so that the developer of an application is not forced to utilize all of the resources available. The developer can choose to include information that will be used by mechanisms as deemed advantageous for the users of the application.

4.1 Answering “Why not” Questions in Complex Rule-based Systems

As mentioned in Section 3.3, one of the limitations of earlier systems that provides answers to “Why not?” questions is that the rules of the systems utilize rather simple and discrete knowledge representations such as the rule depicted in Figure 7 (repeated from Figure 5 in Section 3.3). The primary focus of the current work in QUE is to overcome that limitation and provide a first step toward answering this type of question in systems that utilize more complex representations such as that depicted in Figure 8, which are equivalent to predicate logic representations.

Figure 8 depicts an abstract representation of the possible types of constraints that might be found in a rule antecedent for a hypothetical real estate expert system that matches clients to properties. In this figure, there are patterns for two objects (one of class Client and one of class House) and a Test clause. There are constraints on each of the individual objects. For the Client clause, there is a constraint that the value of its pre-approved slot be “Yes”, indicating that for a Client object to match this clause, it must be pre-approved for a mortgage. For the second clause, a matching House object must have the value “Good” in its school-rating slot. There are two additional constraints in this set of clauses. The use of the same variable, (?S), in both the first and second clause is a constraint which requires a House object that has a value for its style slot that is the same as the value for the style-preference slot of the Client object. The final constraint is implemented in the Test clause. The Test clause requires that the value of the budget slot of the Client object (assigned to the variable ?B) must be greater than or equal to the value of the price slot of the House object (assigned to the variable ?P).

[image: image13.wmf]

 style

-

preference ?S

pre

-

approved “Yes”

 budget ?B

 style ?S

school

-

rating

“Good”

 price ?P

Test

 (>= ?B ?P)

IF

THEN

Modify

Client

?C

 House

-

List (Add

?H

)

Client ?C

House ?H

Since there are no limits on the number of objects described in a rule antecedent, the number of properties constrained for each object, or the number of inter-object constraints, the structure of a rule antecedent can be quite complex. For example, the expert system for real estate selection might have additional constraints specifying that the property must be within a given distance of several other objects, say, the client’s workplace and a shopping center.

Rule antecedents such as the one in Figure 8 have a roughly hierarchical structure consisting of descriptions of objects (constraints on the slots or attributes of objects) and constraints on relations between the objects. This is in contrast to the relatively flat structure of the rule structure in Figure 7 (from DeBrief). When the set of constraints cannot be met in a rule such as that in Figure 8, it is possible that loosening the constraints on the objects or the relations between them might find a match that is potentially useful. If not, it may clarify why a match failed. In systems that utilize flat rule structures like that in Figure 7, loosening a constraint often means simply swapping one value for another. For example, suppose a user of the tactical air defense system in DeBrief asked the system “Why didn’t you employ your weapons?”. The system answer might be as simple as “ROE (Rules of Engagement) was not achieved.” However, in system that utilize more complex object representations and have more complex rule constraints, loosening constraints becomes more complex. For example, in the rule antecedent in Figure 8, if no full match can be found, it is possible that either loosening the constraints on the objects (e.g., changing the value of the school-rating slot) or loosening the inter-object constraints (e.g., allowing the style of the house to vary) might permit a match.

So, in systems that utilize more complex representations, the problem of relaxing constraints is inherently ambiguous and potentially combinatorially complex because rule constraints can be relaxed in many different ways. When there are many different constraints that might interact with each other, the most minimal constraint relaxation might only be found by relaxing different combinations of constraints to different degrees. It may be the case, however, that some constraints in a rule antecedent should not be tampered with at all since that may violate the very intent of the rule. This is similar to the idea of “criticality” in hierarchical planning systems (e.g., ABSTRIPS, Sacerdoti, 1974). For instance, in the home-selection system, relaxing the constraint in the test clause that the client’s budget must be greater than the price of the house might make sense depending upon the circumstances of the buyer and seller. However, relaxing the class house to the superclass building is not likely to be an appropriate action because the client most likely would not be interested in a warehouse, a parking garage or a barn. On the other hand, if the client were interested in commercial property, such a generalization might be suitable.

To loosen constraints, QUE uses constraint relaxation processes similar in some respects to those used in some types of machine learning processes, such as generalization, extension of references and constraint elimination (Michalski, 1983). The relaxation mechanisms utilize additional developer-supplied information to assist in determining which relaxations are appropriate to attempt first.

In QUE, a “Why not” question posed by a user may refer to the existence of any type of object or value for a slot of an object. There are a variety of different possible answers to this question. The possible answers depend upon the current state of the knowledge base as well as the past states of that particular run of the expert system.

For example, it is possible that the situation (some combination of objects or values) that the user is asking about did indeed exist in a prior state of the system. In this case, it would seem that the most appropriate answer would be to inform the user of the past existence of the object or value along with the rule that resulted in the modification or deletion along with the point in the processing at which the change occurred. Since the existence of the objects that fulfilled the constraints caused the rule to take the action it did at that point, the user may want to ask “Why” about any of the instantiated antecedent clauses of that rule in the context (state) in which the change occurred. Following up with a “Why” question at this point allows the user to discover what led the system to delete or modify the user’s anticipated result.

Another possible answer to a “Why not” question occurs when the object value in the user’s “Why not” question never existed, but could have been the result of at least one rule in the rule base. In some expert system architectures, including most of the systems that have attempted to answer this type of question, rule actions are limited to actions on constants such as “Buy AT&T” or “Fire weapons”. If the user asks, “Why not buy AT&T?” or “Why not fire weapons?”, one of these rules would be retrieved. The rule constraints or conditions in these systems are similarly stated in constants such as “If client is risk-adverse and …” or “If incoming speed is fast and …”. In order to answer “Why not” questions in these systems, the system need only check to see which of the simple conditions are not satisfied and which one of a discrete set of values would have to be different in order for the rule conditions to be satisfied. So, these systems might report, “I would have chosen fire weapons if incoming speed was fast but incoming speed was slow”. However, as mentioned above and illustrated in Figure 8, many expert system architectures have rule constructs which allow for more complex object descriptions and use variables in both the constraint and action definitions. The process of finding and analyzing rules that could have produced a given result is more complex in this case since it involves matching queries against the “variabilized” actions, passing these variable bindings back to the conditions, and then analyzing these conditions which may or may not still contain unbound variables in a particular state of the knowledge base. An objective of QUE is to overcome the limitations of past systems, at least in part, by developing a means of handling “Why not” types of questions for systems whose conditions and actions are both more complex (utilizing more complex objects and continuously varying values) and more general (utilizing variables) while still handling the simpler cases that have been demonstrated earlier.

When the user asks a “Why not” question about an object or situation that never existed, but could have existed as the result of at least one rule, QUE retrieves these rules for the user to examine further. The values expected by the user (from the user’s question) are substituted for the appropriate variables where possible in the rule consequent (actions) and the same variable bindings are carried through to the rule antecedent (conditions) variables. These values in the rule antecedent will help define additional constraints that would have had to occur via rule instantiation for the user-anticipated result. For instance, in the real estate example rule in Figure 8, the user might want to ask why a certain property was not matched to a particular client. Assuming that the consequent of a rule could have taken such an action, the rule would be retrieved by QUE and the appropriate slot values of the particular property and client would be substituted for the variables. The user might then see what prevented the rule from firing – perhaps the test clause was not satisfiable because the price of the property is greater than the client’s budgeted amount.

If the user wishes to continue the investigation of why an anticipated result was not achieved at this point, the user can ask “Why not” on any of the uninstantiated rule antecedent clauses. By asking follow-up questions, the user is chaining backwards through a series of possible events that did not occur in the expert system’s reasoning path. The system’s response to a follow-up question is basically the same as it is with initial “Why not” questions. The system retrieves rules that might result in the object represented by the uninstantiated clauses.

In addition to locating relevant rules, when the user asks a “Why not” question on an antecedent clause that cannot be instantiated, QUE also informs the user about the objects in the knowledge base that most closely match the clause in question. QUE uses the relaxation processes to find the closest matches. As presently designed, the system requires a good deal of user direction. In the future, it may be interesting to see how far the system can go in pursuing an investigation on its own and present the user with a more complete answer.

4.2 QUE

The foundation of QUE is a set of mechanisms and interfaces that assist user investigation of the reasoning processes and knowledge base of a forward chaining rule-based expert system.

Early development of QUE was carried out in KnowledgeWorks® , a commercial UNIX-based expert system development environment from Harlequin, Inc. While KnowledgeWorks is a very flexible system amenable to extension in a number of ways, the extensions needed for QUE would have required access to source code. So, re-implementation in a LISP development environment was undertaken as a part of this dissertation work.

Using a general development environment rather than an expert system development environment meant that an inference mechanism was also needed. A LISP-based forward-chaining production system (Metzler, 1995, 1999) was utilized for the basic rule-based reasoning mechanism. Other tools, such as the provision of rule traces, a class hierarchy browser and an object browser have also been replicated in the current environment, some with less sophistication than KnowledgeWorks and similar commercial expert system environments and some with somewhat more sophistication.

Two examples of the tools that needed to be replicated are the rule trace facility and the class and object browsing facilities. The KnowledgeWorks environment has a rule trace facility providing a grid display with all of the rules in the expert system listed along the y-axis and the firing cycles of the reasoning process along the x-axis. In this display, a colored cell at the intersection of a rule and a cycle indicates that the rule fired in that cycle of the reasoning process. A half-filled cell indicates that the rule constraints were satisfied, but that the rule was not selected to fire by the conflict resolution mechanism. This display was not designed as well as it might have been because scrolling the grid up or to the right results in the cycle numbers and/or the rule names to scroll off of the screen, and one is left looking at a screen of filled, half-filled and unfilled squares with no reference information. In ERD-QUE, the user is furnished with a list of the rules that fired in the order of the cycles in which they fired and the means to examine any rule in the context of the state of working memory at any cycle of the reasoning process (See Section 4.2.3.2 on the Rule Analysis Window).

The class browser of KnowledgeWorks includes all of the classes of the entire development environment including interface objects such as windows, panes and widgets. The object browser of the expert system environment is separate and lists instances of a selected class by their internal LISP representation, which is somewhat cryptic in appearance (e.g., <#student 20a43bca2>). By clicking on one of these objects, the user can see the details of the objects, but a good bit of information that is important only for the internal workings of the system is also included. In ERD-QUE, objects are represented by the class and an identifying slot (e.g. (student “Tom”)) and only the classes and slots and values that may be of interest to the domain of the expert system are displayed to the user (See section 4.2.3.1 for more information on the Rules and Objects Window).

The two major mechanisms in QUE are the context mechanism and the relaxation mechanisms, both of which are dependent upon extending the knowledge representations of both the rules and the objects.

4.2.1 The Context Mechanism

In nonmonotonic reasoning such as is used in most production systems, as the inference engine cycles, objects are created, modified or deleted. These processes present difficulties for some types of explanations since the explanation may need to refer not only to the current state (or context
) of the reasoning process, but also to earlier states which may have afforded possibilities that are no longer available in the current state. In most production systems, a system in state N has no way of knowing what objects may have been available in state N-1. The context mechanism maintains complete knowledge of all previous states and provides the ability to re-establish past states for investigatory purposes. Other means of re-establishing past states, such as backtracking, which is available in some production systems, were not utilized because backtracking mechanisms typically delete states over which they backtrack. As a result, backtracking can not maintain hypothetical branches of reasoning, which was desired in the QUE environment, for the purpose of comparison at any time. The time required for the QUE context mechanism to re-establish any state in any branch of the reasoning path will depend on the number of objects in the knowledge base, but will be relatively constant for any set of reasoning paths. The time required for backtracking would depend upon the length of the reasoning paths and where the branching points occur.

In order to provide this type of functionality, the context mechanism maintains and tracks every object that was created during the reasoning process. The creation, modification and deletion activities of the production system are adapted so that all objects and all modifications of those objects are maintained during the QUE session.

The context mechanism relies on four slots that are added to every class description in the expert systems knowledge base. These four slots are added by defining a class that is then used as the superclass for every other class used in the expert system’s knowledge base. The start slot indicates the cycle in which an object was created. The end slot indicates the cycle in which an object was “virtually” deleted. The status slot indicates whether or not an object is available to the rules for the reasoning process in the current cycle. When an object is “deleted” by a rule action, rather than removing it from the knowledge base, the status slot value is set to “out” and the cycle in which this action took place is recorded in the end slot. Setting the status slot to “out” removes the object from consideration by the rules of the expert system in further processing in the current and future cycles. However, the object is still available should the user wish to re-establish an earlier state in which the object was available.

Like deletions, modification actions are altered so that changes can be tracked by the context mechanism. When an object is modified by a rule action, what actually happens is that a new object

identical to the original except for the modification is created. The original object is marked as “out” and the new object is identified as a continuation of the original via the fourth additional slot, the parent slot.

When the user wishes to investigate any state of the expert system’s reasoning process, that state is made current and the system recognizes all of the objects and only those objects that were available in that state by changing the status slots of objects to “in” or “out” as appropriate depending upon the values in their start and end slots. (See Appendix ?) [image: image14.wmf]a

b

c

d

The original context mechanisms of QUE permitted all of the following types of activities depicted in Figure 9. The first line (Figure 9a) depicts the working memory states or contexts of the initial reasoning path of the expert system for some problem-solving episode. The context mechanism keeps track of past states (or contexts) (Figure 9a) and provides the ability to recreate past states (Figure 9b) for investigation of the objects that existed in them and the potentially relevant rules that were available in them. The second line (Figure 9b) depicts the re-establishment of an earlier working memory state. The user might have opted to re-establish this state after learning that the expert system took some action in this state that the user wishes to investigate further – perhaps because his own expectations were at odds with this particular action.

The third line of Figure 9, (c), depicts a new state of working memory created by a user modification of the objects that existed in the state of the original system reasoning path marked with an asterisk in Figure 9b. The user modification may have been made by the user after being informed by QUE that an alternate user-anticipated action might have been possible at this point if a certain condition existed. The user can add that condition (in the form of a new object or the modification of an existing object), thus creating a branch off of the original line of reasoning. The user could then start the reasoning process from this state, creating the new line of reasoning in Figure 9d, in order to see if the expert system concludes the user-anticipated result given the user modification. In this fashion, the user can find the answer to a “What if” question which asks what the result of the reasoning process might have been, if the state of the knowledge base had been different at a certain point along the way. The context mechanism maintains both reasoning paths so that the user can return to any state in either of them in order to investigate the reasoning of the expert system even further.

The ability to modify the knowledge base based upon user modifications are useful primarily in answering “What if” types of questions and were not included in ERD-QUE since the focus of this work is on the “Why not” type of question.

4.2.2 The Relaxation Mechanisms

The relaxation mechanisms assist the user in determining how close the potential fit between the knowledge base and a particular conclusion actually is in a particular context. In many situations, there is a relatively narrow gap between the belief states of two agents. Interesting mistakes and mismatches of beliefs can often be characterized as “near misses” and it is often useful to precisely identify the nature of the mismatch. Such situations can arise in teaching interactions, in user attempts at obtaining an understanding of an expert system conclusion, or in the analysis of system errors by an expert system developer. Providing information regarding the extent of the change to the knowledge base that would be needed in order for the expert system to arrive at the user anticipated conclusion is a step in the provision of more informative answers to “Why not” questions rather than simply stating that a certain rule constraint was not satisfied.

4.2.2.1. Invoking and Controlling the Relaxation Process

As mentioned in the section above, determining which constraints of a rule antecedent are reasonable to change is a difficult problem if there is no explicit knowledge regarding which constraints are appropriate to try. Such relevant knowledge can include general world knowledge regarding how easily things can vary, domain specific knowledge regarding how much sense it makes to vary things in the problem domain, and question specific knowledge regarding what a specific user may consider reasonable to change in the context of a specific situation.

There are two parties who may have information regarding which rule constraints should be relaxed and to what extent they should be relaxed. One of those parties is the user who, in some situations, may be knowledgeable in the domain and/or have preferences regarding possible changes to a rule. Therefore, one approach is to give the user control over the structure of the relaxation process (e.g., specifying on what parts of rules to relax, which to hold constant) and the ability to place limitations and priorities on the objects being relaxed, based on the user’s knowledge, assumptions or preferences.

The other party with relevant information is the system developer who might have general world knowledge or domain specific knowledge regarding the variability of values and rule constraints. One means of implementing this approach is to provide some means for the developer of the system to include the information regarding the relaxation options as annotations to the rules and objects. These annotations would indicate to the system what types of constraint relaxation might be appropriate when the user had other expectations. For example, the developer will be able to indicate which relaxations should be attempted first. This is similar in some respects to a suggestion by Sypniewski, (1994) who recommended that priorities indicating the importance of antecedent clauses or parts of clauses be specified in rules and also to the concept of “criticality” used in some hierarchical planners such as ABSTRIPS (Sacerdoti, 1974). These priority indicators could additionally provide the user with an indication of which parts of the rule condition were most critical. This latter approach of having the developers indicate which constraints to relax when the user had different expectations bears some similarities to the “buggy-rule” approach proposed by some (e.g., Brown and VanLehn, 1988), but is more general in nature and is applicable in explaining options which are not necessarily mistakes.

The latter (system developer) approach has been adopted for ERD-QUE, since the application is directed towards users who are most likely relatively unfamiliar with the rule- and object-based reasoning paradigm. This approach includes:

1. providing low level system guidance for relaxing individual parts of the overall problem.

2. providing hooks for the system to make use of general background knowledge when that has been provided in the knowledge base of a particular system.

The relaxation mechanisms operate on the different types of clauses that can occur in the rule antecedents. Basically, in the QUE architecture, there are two types of clauses that can occur in the antecedent of a rule in the environment being used: object clauses and test clauses. Object clauses are patterns that define a type of object instance that must occur in the knowledge base. Object clauses begin with the type of the required object, followed by a variable that becomes bound to the object if instantiation takes place. Following the object variable are slot/value pairs. Slot/value pairs consist of the name of the slot and either a specific value that must occur in that slot of a particular object for the clause to be instantiated, or a variable that binds to the value of the slot of a specific object. When a variable is used, it will either appear again in conjunction with another slot or object indicating that this slot or object must be identical to the previous binding value of the variable, it will be used in an additional constraint in a test clause, or it is used as a value in the action part of the rule. The first two clauses of Figure 8 (Section 4.1) are object clauses.

Test clauses express additional constraints on objects or values by applying predicate functions to bound variables. For example, if the value of one slot must be less than the value of another, this can be accomplished by using variables to bind the values of the slots and then test the relation in a test clause. The test clause of Figure 8 compares the values bound to the two variables. The predicate test or relation in a test clause can be any sort of test including any LISP predicate test or a developer-defined predicate test.

When the developer has included relaxation information, the system will be able to, at varying levels of granularity, instruct the relaxation functions when to hold a constraint constant, relax it freely, relax within certain limits and/or relax it by certain increments. (The remaining subsections of Section 4.2.2 provide more detail regarding the information and the processes that utilize it.) The relaxation processes will not change clauses that define objects or slot values that have been marked by the developer to be held constant. For example, if there is a constraint expressed by using the same variable in two value positions (indicating that the values of the two slots must be the same) and the developer has indicated that this constraint may not be changed, that constraint will be held constant. In the rule depicted in Figure 8, the variable, ?S, used in both the first and second clauses of the rule signifies that the value of the style-preference slot of the Client object must be the same as the style slot of the House object. Breaking the constraint signified by the use of the same variable in two places, in this scenario, may be an appropriate relaxation of constraints. In other rules in other domains, breaking such a constraint might seriously violate the intent and meaning of the rule, allowing some action that is totally unacceptable. Indicating which constraints are not to be relaxed, serves to constrain the possibilities that the relaxation processes need to consider when determining which constraints to relax.

The system also considers a possibility ignored by previous systems. In answering “Why not” types of questions, earlier systems only consider constraints that are not met. However, in systems with constraints that are interdependent, it may be the case that constraints that are met may actually be the ones that are the most appropriate to relax in order to examine possible alternatives rather than those constraints that cannot be met. For instance, in the hypothetical real estate system, assume that the school-rating constraint of “Good” is met, but the style constraint is not met. While the school-rating of “Good” may be very important for a person with school-age children, it may have been specified by a person without children because the person believes that the rating of the school district has an effect on long-term property values. For the latter person, it may be that the school-rating constraint of “Good” is the most appropriate to relax while for the former, relaxing that value may be unacceptable. Relaxing a constraint even though it can be met, may result in a wider set of potential close matches to what a particular client is looking. Based on this assumption, QUE is designed to look at all constraints, not just those that cannot be met.

Once it has been determined which constraints should be relaxed, additional information regarding the nature of the constraint is used by the constraint relaxation mechanisms to relax the constraint.

For object clauses that cannot be instantiated in their current form, but are eligible to be relaxed, the system tries to determine what is preventing the instantiation by checking the knowledge base for any objects of the class defined in the clause. If there are no objects of that class, no amount of relaxation, other than changing the class of the object, will permit the instantiation to go through. Changing the class of an object is one type of relaxation utilized in QUE, but only as a last resort or if that type of relaxation is recommended. If only one object of the defined class exists, the problem of relaxation becomes quite simple. In this case, the slot values of that sole object of that class are the values that the clause would need to match in order to be instantiated. If none of the above conditions are true, the system first relaxes each constraint individually and then in combination.

In the absence of direction from the system developer, the system has some default relaxation methods to fall back on. Relaxing slot constraints depends upon the types of values that are appropriate for the slot. The types of relaxation that are available and the basic default methods are described below in Sections 4.2.2.3 and 4.2.2.4. The next section details the type of information that the expert system developer can provide for the QUE relaxation mechanisms.

	Types of Constraint Relaxation
	Information Required
	Level
	Relaxation

Method

	Numeric, Percent
	Percent value (0-1)
	None
	None

	
	1
	Replace value with range

+/- (percent-value * constraint)

	
	2
	Replace value with range

+/- (2 * percent-value * constraint)

	
	Any
	Replace value with new variable

	Numeric, Std. Dev.
	Standard Deviation
	None
	None

	
	1
	Replace value with range

+/- std-dev

	
	2
	Replace value with range

+/- (2 * std-dev)

	
	Any
	Replace value with new variable

	Numeric, Direct Amt.
	Numeric Value
	None
	None

	
	1
	Replace value with range

+/- amount

	
	2
	Replace value with range

+/- (2 * amount)

	
	Any
	Replace value with new variable

	Symbolic, Class
	Class hierarchy
	None
	None

	
	1
	Immediate superclass

	
	2
	Superclass of superclass

	
	Any
	Root class of expert system

	Symbolic, One-of-an-ordered-list
	Ordered list of possible values
	None
	None

	
	1
	Replace with values one away in ordered list

	
	2
	Replace with values two away in ordered list

	
	Any
	Replace value with new variable

	Symbolic, One-of-a-list
	List of possible values
	None
	None

	
	1
	Replace with values in list

	
	2
	Replace with values in list

	
	Any
	Replace value with new variable

	Symbolic, List
	None
	None
	None

	
	1
	Allow subsets or supersets to match.

	
	2
	Allow subsets or supersets to match.

	
	Any
	Replace value with new variable

Table 1. Constraint Relaxation Information Recognized by QUE Processes.

4.2.2.2 Constraint Relaxation Information

For each slot of each class defined in the system, the system developer can opt to provide information about the slot that can be utilized by the QUE relaxation mechanisms in order to appropriately relax the constraint of a rule that uses that slot. This information includes the type of value that the slot can take, appropriate increments for relaxation and the amount of relaxation to attempt. The sorts of information that have been identified and provided for use in the QUE mechanisms are summarized in Table 1 along with a brief description of the relaxation process that will be performed based upon the information.

There are two primary types of values that the relaxation mechanisms recognize. These are numeric and symbolic. Numeric types are subdivided into three relaxation method types and Symbolic are subdivided into four relaxation method types. For most methods, additional information is needed for the relaxation processes.

The numeric relaxation methods that are available in QUE are percent, standard deviation and direct. For each of these types, specific values should be provided. The direct method requires an increment value to be provided. An increment value is a numeric value that will be used (see section 4.2.2.3 below for more detail) in the relaxation process. For instance for real estate property values, an increment value of $10,000 might be appropriate. However, for the dosage of a medication, an increment value of 0.5 mg might be indicated.

For the percent increment methods, the constraint will be relaxed by a percentage of the constraint constant or by a percentage of one of the known constraints. The appropriate increment values for percent numeric relaxations are values from zero to one.

For the standard deviation method, the developer can either provide the standard deviation for the slot values or leave it to the system to determine the standard deviation from all of the values of this particular slot in all of the instances of this particular class in the knowledge base. This latter option assumes that there will be a sufficient number of values in the knowledge base for the system to calculate a meaningful standard deviation.

The symbolic relaxation methods that are available in QUE are class, one-of-list, one-of-an-ordered-list and list. For each of these methods (except for the list subtype), additional information is needed. The class method uses relaxation that progresses along a developer-defined class hierarchy beginning with the specific class in the constraint. The class hierarchy which includes the constraint class is required. The one-of-list and one-of-ordered-list methods indicate that the slot value is limited to being either one of a particular list of values, or one of an ordered list of values. For these methods, the developer must also define the list of values that these slots can take. For example, the developer might specify that the value of a slot is one-of-list and the list is (red, green, blue, yellow, white, black) or that the value of a slot is one-of-an-ordered-list and the list is (poor, fair, good, excellent, superior). There is no additional information required for the list type.

For each method, the developer can specify the maximum level of relaxation that should be attempted. The current system provides for four levels. These are None, 1, 2 and Any. None indicates that no relaxation should be attempted. Levels 1 and 2 are degrees of relaxation. Any indicates that if levels 1 and 2 do not result in matches, that the constraint can be eliminated. This is done by replacing the constraint with a system-generated variable. The relaxation processes utilize these levels as follows. At the first two levels, the processes first attempt the minimal relaxation of each constraint individually. If no matches result from any of the individual relaxations, all of the relaxations at this level are attempted together. If no relaxations at the first level result in a match, the system attempts to loosen the constraints further (to the second level). If no matches result at the second level, the final level breaks the constraints by replacing values with variables or replacing constraints using the same variable in two places with new variable in one of the positions.

When QUE is asked a “Why not” question, involving a set of clauses, it first identifies the constraints in the clauses. The constraints may have been expressed by constants, by the use of the same variable in more than one place in the set of clauses, or by the use of variables in test clauses. Once QUE has identified the constraints, it identifies the slots involved and looks for the developer-provided information. Examples of how the QUE relaxation mechanisms employ this information are provided in the following four sections. (Also see Appendix B for the code.)

4.2.2.3 Relaxation of Numeric Slots

The domain independent nature of QUE poses problems even for numeric relaxation of a single slot since the range of possible values is not explicitly known. Thus any choice of an increment might be far too large, (resulting in too large a jump in the number of matched objects) or far too small (resulting in no changes in the matching set even after many relaxation steps). Furthermore, a numeric slot might be intended to take only discrete values or only values within a certain range. If the developer has included relaxation information, these can be used to reasonably relax numeric constraints. This information includes increments to use in the relaxation process. These increments may be exact values, percentages or standard deviations. For example, in the real estate example, relaxing the price of a property might occur in $10,000 increments, in increments of 5% of the property’s value, or in increments of the standard deviation of property values in the area.

If the developer has not included such information, a default procedure is used to relax numeric constraints. The default procedure uses the knowledge base as a guide. If there are enough objects of the class in question, QUE collects the values of the slot currently in question and calculates the standard deviation. The relaxation process then begins by relaxing the constraint by +/- multiples of the standard deviation.

[image: image15.png]e

-current context

(O - original system path

O -user defined path

As a detailed example of how the numeric relaxation of constraints works, consider the constraint in the real estate example that the client’s budget be greater than or equal to the price of the house. Assuming that the developer has indicated that two levels of relaxation in direct increments of $5000 are appropriate, the relaxation mechanisms replace the test clause in Figure 10a with the test clause in Figure 10b which tests to see if the client’s budget amount is greater than the house price minus $5000. If, for example, the client’s budget amount was $100,000 and the house price was $104,900, the original test would not have succeeded, but the new, relaxed test would succeed and the system would report that the property was a close match. If this relaxation does not result in a match, the value of 5000 in Figure 10b would be replaced with twice the increment value (10000).

Numeric constraints that are implemented in other ways are treated in a similar fashion. For example, if a numeric constraint was carried out by the use of the same variable in two different slot positions constraining the values of those slots to be equal, the relaxation is effected in the following manner. The second occurrence of the variable would be replaced by a new system-generated variable (e.g., ?-1765) and a test clause requiring the value that it represents to be within a certain range of the original variable value based upon the numeric subtype information. Thus the constraint represented by the variable, ?C, in the clauses in Figure 11a would be replaced with the clauses in Figure 11b in which the values in the slots of the objects no longer are constrained to being equal, but the second is constrained to be within a certain range of the first value. (In this example and the next, assume that the numeric method specified had been direct and a value of 10 was supplied.)
Constraints that are carried out by the use of numeric constants, as in the clause in Figure 12a are relaxed by placing a variable (e.g., ?-1432) in place of the constant and adding a test clause that tests for the value of the slot to be within a range of the constant, such as the clauses in Figure 12b.
[image: image16.wmf]

(a)

(test (>= ?B ?P))

(b)

(test (>= ?B (

-

 ?P 5000)))

If no increment for a numeric slot is provided by the developer, the relaxation process attempts to find the standard deviation of values from existing objects in the knowledge base and uses that as an increment value.

4.2.2.4 Relaxation of Symbolic Slots

The ability to relax a symbolic value depends on semantic knowledge that must be supplied either by the specific application developers or by default methods in the system. A simple, general approach to developer-supplied semantics is to use the general topology of CLOS hierarchies since moving up many (but not all) hierarchies is a useful form of generalization. (E.g., “employee” can be generalized to “person”.) Moving up to a parent class permits a match to siblings of the original class. This topological approach depends on the developer of the expert system having developed a relatively rich CLOS type hierarchy of knowledge base concepts.

[image: image17.wmf]

(a)

(Class1 ?a slot1

?C

…)

(Class2 ?b slot1

?C

…)

(b)

(Class1 ?a slot1

?C

…)

(Class2 ?b slot3

?

-

1765

…)

(test (and (>=

?

-

1765

 (

-

?C

 10)) (<=

?

-

1765

(

-

?C

 10))))

For example, in the real estate system rule of Figure 8, if the client in the system has specified a style-preference of Early-American-Colonial and that constraint could not be matched given the other constraints, QUE eliminates the original constraint expressed by the use of the same variable, ?S in the clauses in Figure 13a by replacing the second occurrence of the variable with a new variable (e.g., ?-3866) and a test clause that specifies that the value bound to the new variable must be of the type of the superclass of the value bound to the original variable in the first clause. The clauses in Figure 13a would be replaced with the clauses in Figure 13b. If ?S was bound to Early-American-Colonial and that value’s superclass was Traditional-American, the above clauses would now match properties with style values of Dutch-Colonial and New-England-Saltbox, assuming that those had been defined as subclasses of Traditional-American and the developer had specified one level of relaxation.

Clauses in which a class constraint is expressed using a constant as in Figure 14a are treated in a similar fashion. The constant is replaced by a variable and a test clause is added. So the clause in Figure 14a would be replaced with the clauses in Figure 14b.
QUE provides other means to develop and structure the knowledge base in ways that can be interpreted for the relaxation processes. One such enhancement involves the use of qualitative values such as "good" "bad" "fair" etc. and more domain specific terms that may describe values in a non-numeric range that should support processes of relaxation. (E.g., if you can’t find something that has a “good” value for a particular property, consider a “fair” value, or if you can’t find a “rural” location, consider a “suburban” one, before an “urban” one.) Without this sort of knowledge, the system cannot attempt to find close, reasonable alternatives to the rule constraints.

QUE provides the developer with two different types of methods for common structures. One is a simple list and the other is an ordered list. If the developer specifies that the value of a slot must be one of a certain list, the relaxation process will look for slot values that are in that list, rather than the constraint specified in the rule antecedent. For example, if the values for a particular slot are one of the list (red, blue, green, yellow, white black), QUE looks for any one of those values rather than the specified constraint. If the value is specified to be one of an ordered list, QUE locates the constraint value in the list and relaxes the value to the values adjacent to the one in the constraint. For example, if the values for a particular slot are one of the list (poor, fair, good, excellent, superior) and the constraint in the rule was the value excellent, QUE would look for matches using good and superior. The relaxation processes are similar to those detailed above where the original constraint is eliminated by the use of a new variable and a corresponding test clause.

The final type of constraint value is the list method for slots that have lists as values. In order to relax this constraint, QUE introduces a new variable and a test clause that tests to see if one of the two lists is a subset of the other. The default mechanism for relaxation of symbolic slots is to consider any values occurring in the knowledge base as alternatives.

4.2.2.5 Relaxation of the Class Specifier of an Object Clause

Relaxing the type or class of an object clause, which may be a drastic relaxation in some domains but a reasonable one in others, is performed as a default process when there are no objects at all of the type specified in an object clause. If an object clause in a rule antecedent cannot be matched, QUE first looks at the knowledge base to see if there are any objects of that type in the knowledge base. If there are none, then no amount of relaxation of slot constraints will result in a match. The relaxation process of QUE replaces the class in the first position of the clause with its superclass. This process is similar to the class relaxation of symbolic constraints, but is considered more extreme. In actually performing this type of constraint relaxation, care must be taken that the slots mentioned in the clause actually exist in the different class. However, the relaxation process does not have to be perfect since it is not carrying out actual problem solving but only making observations to the user regarding the nature of changes that would allow a rule to match.

4.2.2.6 Relaxation of Test Clauses

Relaxation of test clauses is currently attempted only if the test is a numeric test (such as less-than (<), greater-than (>), etc.). Relaxation methods for other LISP predicates are also possible. For example, the LISP “equal” test which checks that two objects have identical structures, might be able to be relaxed by looking for two objects of the same class rather than two identical objects. However it would be difficult to define default methods for all LISP predicate tests. Inclusion of developer-defined predicate tests would require specific instructions from the developer. Facilities to handle relaxations of developer-defined and LISP predicate tests other than numeric tests have not been included in this implementation.

4.2.3 Browsers and Interactive Tools

Access to the underlying mechanisms is achieved via a number of interfaces and interactive tools. These interfaces enable the user to inspect the environment and to carry out a variety actions. Upon starting ERD-QUE, the Control Window is displayed. This window provides access to the entity-relationship problems, provides a partial log of user actions and system responses, and provides access to the two main interfaces of QUE. The Control Window is described in more detail in Section 4.3.3.1. The two main interfaces supplied to the user for investigative actions are the Rules and Objects Window (Figure 15) and the Rule Analysis Window (Figure 17). The Rules and Objects Window furnishes a list of all of the rules in the expert system and a portrayal of the objects in the knowledge base as they exist in any state of the reasoning process for a particular problem. The Rule Analysis Window furnishes a portrayal of how any individual rule matches into the knowledge base in any state of the reasoning process for a particular problem. This section contains details on these two major interfaces to the QUE mechanisms. Section 5.3 outlines how these interfaces might be used when the user wishes to question the underlying expert system.

4.2.3.1 The Rules and Objects Window

The Rules and Objects Window (Figure 15a and b) consists primarily of two scrollable outline panes, the Rules Pane and the Objects Pane. The Rules Pane contains a listing of all of the rules of the expert system and provides an initial view of the conditions and actions of each. More detail on each rule can be obtained via the Rules menu. The Objects Pane contains a portrayal of the class hierarchy of the expert system and the instances of the classes that exist in the current state of the knowledge base. More detail on each instance can be obtained via the Objects menu. The user can change to any state of the knowledge base that existed during the reasoning process of any particular problem via the Cycle menu.

The Rules Pane

The Rules Pane affords access to all of the rules that make up the expert system. The conditions and actions of the rules can be viewed by clicking on the “+” next to the word condition or action respectively (Figure 15b). Each rule can be examined more closely by highlighting a rule in this pane and selecting Show Rule Analysis Window from the Rules menu.

The Object Pane

The Object Pane displays the class hierarchy and the instances used in the expert system processing. Subclasses of each class are hierarchically listed below each class. If a subclass has more than one superclass, it appears in blue. Instances of classes are the actual objects that exist in the system. Instances are displayed in red by an identifying attribute. Each instance can be opened by clicking on the “+” next to it to reveal a list of the slots and respective values of that particular object (Figure 15b).

[image: image18.wmf]

(a)

(Class1 ?a slot1 100…)

(b)

(Class1 ?a slot1

?

-

1432

…)

(test (and (>=

?

-

1432

 90) (<=

?

-

1432

 110)))

The Cycle Number
The Cycle
 Number tells the user which cycle is current. Each rule firing of the expert system is considered one cycle. The cycle numbers start at zero and end with the number of rule firings in the system.

The Cycle Menu

The Cycle Menu allows the user to re-establish any past state of the system for investigation of why a rule did or did not fire and to examine any state of the object base. If there are other windows open that are cycle-dependent, such as the Rule Analysis Window described in Section 4.2.3.2, the effect of the change will also be seen in that window as well. The choices in the Cycle Menu are:

· Next Cycle – this choice re-establishes the next cycle in the expert system’s processing, unless the system is already in the last cycle.

· Previous Cycle – this choice re-establishes the previous cycle in the expert system’s processing, unless the system is already in the first cycle.
· First Cycle – this choice re-establishes the initial state of the expert system for that problem solving episode.
· Last Cycle – this choice re-establishes the final state of the expert system for that problem solving episode.
· Go to Cycle #… - this choice brings up a pop-up window in which the user can enter which cycle is desired and re-establishes that state.
The Rules Menu

This menu contains two choices that are applied to the rule selected in the Rules Pane.

· Show Rule Detail - This choice displays the Rules Analysis Window for the rule that is highlighted in the Rules Pane.

· Cycles Rule Ran – This choice informs the user in which cycles the rule selected in the Rules Pane fired.

The Objects Menu

This menu has only one choice that is applied to the object selected in the Objects Pane.

· Show Object Detail - This choice is answered with a history of the object instance highlighted in the Objects Pane. The history of the instance - when it was created, and what modifications were made up to the current cycle – are provide in a pop-up window. See Figure 16.
[image: image19.wmf]

(a)

(Client ?C style

-

preference ?S…)

(Property ?P style ?S…)

(b)

(Client ?C style

-

preference ?S…)

(Property ?P style ?

-

3866…)

(test (typep ?

-

3866 (get

-

superclass ?S)))

4.2.3.2 The Rule Analysis Window

The Rules Analysis Window (Figure 17) provides detailed information regarding the rules of the expert system in a particular cycle of the expert system’s reasoning path. It contains five major components – (1) the Rules List, (2) The Matches List, (3) the Rule Condition Pane, (4) the Rule Action Pane and (5) the Rule Information Pane.

The Rules List

This is a pull-down list that includes either all of the rules of the expert system, or a subset of the rules, depending upon how the Rule Analysis Window was accessed.

The information portrayed in the Rule Analysis Window is context-dependent in two different ways. One of the ways that it is context dependent is the manner in which it is accessed. The Rule Analysis Window can be accessed in a number of different ways, from the Control Window, from the Rules and Objects Window or as the result of a user question. The rules available in the Rules List are dependent upon how the window was accessed.

If the window is displayed from the Control Window, all of the rules of the expert system are available from the Rules List. If the window is displayed from the Rules and Objects Window, only the rule highlighted in the Rules and Objects Window is available in the Rules List. If the window is displayed as the result of a user question, the Rules List contains only those rules that are retrieved in response to the question. If the question is a “Why” question, only the rule that produced the thing in question are available in the Rules List. If the question is a “Why Not” question, all of the rules that might have produced the object in question are available in the Rules List. When the Rule Analysis Window is displayed as the result of a user question, the question appears in red at the top of the window, below the menubar.

[image: image20.wmf]

(a)

(Client ?C style

-

preference Early

-

American

-

Colonial…)

(b)

(Client ?C style

-

preference ?

-

1876…)

(test (typep ?

-

1876 (get

-

superclass Early

-

American

-

Colonial)))

The second way that the Rule Analysis Window is context dependent is that it reflects the status of the system at a certain point (a particular cycle) in the system’s processing. That is, the information reflects the status of the rules dependent upon which cycle is current. That permits the user to examine how the rule can match into the knowledge base of the expert system at any point along the expert system’s reasoning path.

The Matches List

This is a pull-down list that includes all of the ways that the rule being displayed in the window can be matched with objects in the knowledge base at the current cycle state. If the rule conditions can match into the knowledge base, each possible match combination is included in this window and is identified by a number. The list will always include “0”. Choosing “0” in the Matches List displays the rule in its original form with no match in place. Choosing another match (above 0, if there are any) will replace the variables in the Rule Condition and the Rule Action panes with a list, in parentheses, of the variable and the value that can be bound to the variable. For example, ?n might be replaced with (?n . car). If the variable binds to an object, the object is represented by the word “Object” and its ID number. For example, ?e might be replaced with (?e. “Object-12”).

The Rule Condition Pane

The Rule Condition Pane provides a detailed account of the constraints that must be true in order for a rule to fire. There are three types of clauses that can be seen in the condition of a rule.

· Object clauses – These clauses begin with the name of a class of objects. The variable following is bound to an instance of that class, if the clause can be matched. Following the class name and the instance variable are slot-value pairs. The slots are properties of the class and the value is the value that slot contains for a particular instance. If a variable occurs in the value position, that variable will be bound to the slot value of a particular instance. If a variable occurs in more than one clause, it means that whatever value it was bound to initially, will have to match the values where it occurs later.
· Test clauses – These clauses begin with the word “test” and are followed by some LISP predicate test (including developer defined predicates) which must be true in order for the rule to fire. Often a test clause may check some relationship between variables such as (test (> ?x ?y)).
· Is-no clauses – These clauses begin with the phrase “is-no” and are followed by an object clause and possibly additional test clauses. This type of clause will be true if there is no object in the knowledge base which matches the conditions of the clauses within it.
Object clauses and Test clauses in appropriate combinations can be highlighted and questions asked about them (“Why” and “Why Not”) from the Questions Menu on this window.

The Rule Action Pane

The Rule Action Pane displays the actions of the rule, when it fires. If the Rule Analysis Window was accessed by a “Why not” question, the action that matched the user question is highlighted.

The Rule Information Pane

The Rule Information Pane lists when (in which cycles) the rule being displayed in the window fired and when the goal of the rule was true.

The Cycle Menu

The Cycle Menu allows the user to re-establish any past state of the system for investigation of why a rule fired or why a rule did not fire. If there is a Rules and Objects Window open when the cycle is changed, the effect of the change is also seen in that window as well. The choices on this menu are identical to those of the Cycle Menu on the Rules and Objects Window described in Section 4.2.3.1 above.
The Questions Menu

The Questions Menu allows the user to ask “Why” and “Why not” questions about any subset of clauses of the rule condition.

· Why – This choice will ask “Why” the highlighted clause(s) in the Rule Condition Pane can be matched. Typically, this question should be asked when the rule has been instantiated with a match from the Matches List. The question should be asked on as small a subset of clauses as possible.

· Why Not – This choice will ask “Why” the highlighted clause(s) in the Rule Condition Pane cannot be matched. Typically, this question should be asked when the rule has been partially instantiated with a match from the Matches List or as the results of asking a “Why not” question, when the entire rule condition cannot be matched. The question should be asked on as small a subset of clauses as possible.

4.2.4 Asking a “Why not?” question in QUE

In QUE, “Why not” questions are posed by a user in the form of an object or related objects that the system has not reported in its reasoning process. This type of question might be posed by an end-user of an expert system who wants to question why another diagnosis was not concluded, or by an expert system developer who needs to verify that the system is rejecting incorrect conclusions for the right reasons. An “object” can represent any sort of “conclusion” that the system is capable of creating, utilizing, and manipulating. For instance, the object might represent a physical object that a design system created, or a belief in a diagnosis that a diagnostic system might have concluded.

[image: image21.jpg]Objects

find-more-attributes-for-entities-1

K |

| Fues Cycle Obiects
Cycle

Rules 14 objeas
find-entities-from-nouns-1 :’ er-object
condtion & relation
remove-repeat-nouns-1 é; ecursive-ternary.-relation
&-condtion B
-action |- isa-relation
remove-repeat-nouns-2 |tinary-reiton
- condtion E-recursive-relstion
-action L recursivedernary-reltion

mocifier

mi |7

L prepostiona-mocifier

The internal representation of the “object” is identical to the syntax of the rule antecedents used in QUE with the exception of is-no clauses (See Section 4.2.3.2 above), which are omitted from the question facilities. What this means in terms of the generality of the QUE mechanisms is that the question can be quite complex. The “object” in a question may range from asking about an object of a specific class (Figure 18a) to asking about an object of a certain class, which has as one of its slot values another independent object with slot values of its own (Figure 18b). The question can also include test clauses. However, questions should be kept as simple as possible since the QUE mechanisms look for rules that could have created such an object and it would be unlikely that a single rule would be taking a large number of actions on a number of objects.

The answer to this type of question varies depending upon the reasoning of the system and there are a variety of possible scenarios that may have occurred. These include cases in which the object does exist in the system but was not preferred, the object did exist in a past state of the system but was modified or deleted, or the object never existed but there is at least one rule that could have created that object. When there exists at least one such rule, the focus turns to the determination of why it didn’t conclude the object in question. It is this latter situation on which much of the system development has focused. (See Appendix C)

4.3 ERD-QUE

ERD-QUE includes the current implementation of QUE tools and mechanisms described in Section 4.2 and a problem practice environment for entity relationship diagrams. ITSs for entity relationship diagrams have been developed (e.g., Hall and Gordon, 1998; Constantino-Gonzalez and Suthers, 2000). The goal for this implementation of ERD-QUE is to provide users with a set of tools that they can use in order to determine why the expert system resulted in one diagram and did not result in another alternative diagram, which may or may not be considered another correct solution to the problem.

A number of components went into the problem practice environment. A rule-matching system developed by Metzler (1995, 1999) was augmented to make use of the context mechanism described in Section 4.2.1. An expert system that can assemble objects that represent an ER diagram from an object-oriented representation of a textual problem description was developed. The entity relationship diagrams use the notation described by Chen (1976). The representation used as input to the expert system is based on the nouns and verbs used in the problem description. These basic parts of language are often used as the starting point for constructing ER diagrams (e.g., Hall and Gordon, 1998). In addition to the QUE interfaces described in Section 4.2.3, four interfaces were developed that display the problem and the ER diagrams, provide access to the QUE interfaces and collect data for the observational study.

4.3.1 The Choice of Application

The reason for choosing a problem-practice environment that might be a part of an intelligent tutoring system is that it lends itself particularly well to the user-question paradigm desired. Student/users often have questions as to why or how a particular result came about and why their own result was not correct or perhaps just not preferred. Just as it is important to know why a certain answer is correct or optimal, it is important to know why another answer is not. From an ITS perspective, this work explores a method to provide a form of explanation facility for ITSs that have an intelligent domain module, and to do so in a way that is essentially domain independent. At the same time, it allows a system developer to provide domain specific declarative knowledge that the system can usefully employ. The architecture of ERD-QUE can be envisioned as an addition to an expert system module providing the problem-practice component of a tutoring system.

In the exploratory problem practice environment, the QUE component in essence replaces the pedagogic and student models of the traditional ITS component, but it is possible to imagine a pedagogic component that would utilize the QUE capabilities to analyze student answers in order to provide input to and analysis of a student model, and to plan teaching responses based on such assessments (See Section 6.2.3).

On a practical note, the problem-practice type of system planned suits the overall purpose of this project because a comprehensive stand-alone expert system is not required. Only those portions of an expert system required to solve the problems used for testing and training are needed. This permitted the programming development aspects of this effort to focus on development of QUE and the problem practice environment rather than on the substantial effort involved in developing a complete expert system for a complex domain.

4.3.2 The Choice of Domain

The domain of entity-relationship diagramming problems was chosen because of several appealing aspects. One of the attractive aspects of entity-relationship modeling is that although it is somewhat formal, subjective judgments sometimes need to be made and in some cases, there is no single correct solution to a problem. This domain suits the goals of this project because the mechanisms of QUE are particularly applicable in answering questions where subtle differences in knowledge or assumptions may lead to different solutions. The knowledge representations and mechanisms of QUE are designed to facilitate the investigation of alternative solutions. So, the type of domains and problems desired are those in which there may be a number of good or possible answers - that is to say, those that are not as formal as, for instance, basic mathematics.

Implied in the “semi-formal” nature of this domain is that it involves knowledge of real world entities, including both particular facts mentioned in the problem descriptions and background assumptions that may be implicit. Some of the subjective judgments made in developing ER diagrams are similar to those involved in knowledge acquisition situations in terms of deciding what is relevant to represent and how best to map a real world problem into a computational system. The complexity of real world knowledge provides a substrate for the mechanisms described above. At the same time, the tutoring architecture limits the complexity of the real world knowledge required to a manageable level.

There were also practical advantages considered in the choice of this domain. One is the availability of texts and websites which illustrate potential alternate solutions to ERD problems and also typical novice mistakes on these type of problems. Another practical consideration is that entity-relationship modeling is taught in most DBMS courses and a system that provides practice for students learning this modeling process would be potentially useful.

4.3.3 Interfaces for ERD-QUE

4.3.3.1 The Control Window
The Control Window is opened upon starting the application and remains open during the entire session. This window contains a Message Pane, and an Answer Pane and a number of menus (Figure 19).

[image: image22.jpg]J
Bules Cycle Objects
Rules 14 Objects
FIND-ENTITIES-FROM-NOUNS-1 S | I
(GOAL ?GOAL LABEL FIND-ENTITIES-FRC [~(ATTRIBUTES (CURRENT-BAL A¢
(NOUN PNOUN LABEL ?LABEL DESCRIPT! \:’U'\E‘ll ACCOUNT)
(IS-NO (ENTITY ENTITY2 LABEL 7ENT2-L [~(ATTRIBUTES (SSN CITY STREE
(DELETE ISTANCE OUNT) _’J BRANCH =
KNS | E— LIJ
|

The Message Pane displays the rule trace of the expert system when each problem is opened, maintains a record of many of the subject’s actions and records all of the systems replies to subject questions. It can be consulted at any time so that the subject can review his actions and the answers that the system provided. The subject can copy information from the Message Pane to the Answer Pane when answering the questions for each problem.

The Answer Pane in the bottom portion of the Control Window is where the subjects type answers to the questions posed for the problems in the practice environment. In the version developed for the feasibility study conducted, there are four questions provided for each problem. The question to be answered can be viewed by holding the mouse cursor over the active button. After the subject has entered the answer to a question in the Answer Pane, the active button should be clicked. The next question button becomes active.

When the subject chooses a problem from the Control Window, the rule trace for the expert system solution is printed to the Message Pane in the Control Window and three windows are displayed:

· the Problem Description window

· the Expert System Diagram window, and

· the Alternate Diagram Window.

[image: image23.jpg]The object, ACCOUNT, was crestedincycle 3.
with vales:

[ATTRIBUTES (ACCT-ND))

[LABEL ACCOUNT)

D22)

I cycle . the fallowing values were changed

from 1D 22]to 1D 32)

from [ATTRIBUTES (ACCT-NDJj o [ATTRIBUTES (CURRENT-8AL ACCT-ND))

|

4.3.3.2 The Problem Description Window
The Problem Description window (Figure 20) is a read-only text window that contains a description of the situation for which an entity-relationship diagram should be constructed. The actual input to the expert system that creates constructs representing the solution to the problem are logic-like statements indicating the important objects and their relationships as described in the problem description window.

4.3.3.3 The Expert Diagram Window

The Expert Diagram window (Figure 21) contains a diagram that represents the expert system’s solution to the problem written in the Problem Description window. This diagram contains a toolbar with four question selections. The question selections are four different question templates labeled Why1 through Why4. Holding the cursor over one of these selections reveals the question template that will be asked if that option is selected. Each question is interpreted as a question asking the expert system why it created some combination in the diagram.

[image: image24.jpg]£ Rule Analysis
Dycle Questons

Fules found in resporse to question Cycle
Why i this altibute, curent bal, NOT altached to his relaian,
account? NoMatches 14

A aibutes orelatn T

Rule Condiion

(g0al 7a abel refine elaians staus]
{binatyreltion 7 label sccount ttbutes 1a status)

(sreposiionalmodiier 7m label curert-bal quanity 7g modiies-uhat account status n]
[tost o1 (equal 70 1) (equal 79 0-1))

roun 7n label curentbalpropiy i status i)

Rule Action

(@elte natance 7]

deete nstance 7o)

Rule Iformation

This ule i ot fre ching this expert system run.
The goal was rue nthese cycles

i

To ask a question, the subject selects appropriate objects by highlighting the objects in the diagram and then clicks on the question. If inappropriate objects are selected, an error message will instruct the subject to choose appropriate objects. Inappropriate object selection includes selecting the wrong objects for a question template (e.g., highlighting an attribute and an entity for a question template about an attribute and a relation) and includes selecting objects that are not directly connected (e.g., selecting the question template asking why an attribute is connected to an entity but highlighting the attribute STREET and the entity ACCOUNT in Figure 19 which are not directly connected). (See Appendix D) The system’s answer to the question will be provided in a pop-up window and will also be written in the Message Pane on the Control Window.

· Why1 – The question template is “Why is an attribute, X, connected to an entity, Y?” where X is an attribute highlighted in the diagram connected to Y which is an entity highlighted in the diagram.

· Why2 – The question template is “Why is an attribute, X, connected to a relation, Y?” where X is an attribute highlighted in the diagram connected to Y which is a relation highlighted in the diagram.

· Why3 – The question template is “Why is an entity, X, connected to a relation, Y?” where X is an entity highlighted in the diagram connected to Y which is a relation highlighted in the diagram.

· Why4 – The question template is “Why is an entity, X, connected to a relation, Y with cardinality, Z?” where X is an entity highlighted in the diagram connected to Y which is a relation highlighted in the diagram and Z is the cardinality associated with the connection.

4.3.3.4 The Alternate Diagram

The Alternate Diagram (Figure 22) represents an alternate solution to the problem in the Problem Description window. This diagram may or may not be another appropriate entity relationship diagram solution for the problem description. This diagram contains a toolbar with four question selections, similar to those in the Expert System Diagram window. The question selections are four different question templates labeled WhyNot1 through WhyNot4. Holding the cursor over one of these selections reveals the question template that will be asked if that option is selected. Each question is interpreted as a question asking the expert system why it did not create some combination in the alternate diagram.

To ask a question, the subject selects appropriate objects by highlighting the objects in the diagram and then clicks on the question. If inappropriate objects are selected, error messages instruct the subject to choose appropriate objects as described above for the Expert System Diagram. The system’s answer to the question will be provided in a pop-up window and will also be written in the Message Pane on the Control Window.

· WhyNot1 – The question template is “Why is an attribute, X, not connected to an entity, Y?” where X is an attribute highlighted in the diagram connected to Y, which is an entity highlighted in the diagram.

· WhyNot2 – The question template is “Why is an attribute, X, not connected to a relation, Y?” where X is an attribute highlighted in the diagram connected to Y, which is a relation highlighted in the diagram.

· WhyNot3 – The question template is “Why is an entity, X, not connected to a relation, Y?” where X is an entity highlighted in the diagram connected to Y, which is a relation highlighted in the diagram.

· [image: image25.jpg]£ Contiol Window User ID# 56009

System Traring Testing Utiies Edt

Message Pane

User IDH 56003

8217 2/1/20m

Trsiring Problem 2

Answer Pane
Submit Answer 81 || Gk i

A (A

WhyNot4 – The question template is “Why is an entity, X, not connected to a relation, Y with cardinality, Z?” where X is an entity highlighted in the diagram connected to Y which is a relation highlighted in the diagram and Z is the cardinality associated with the connection.

The question templates provided for the “Why not” questions are a restricted subset of the types of objects that QUE mechanisms can handle. The QUE mechanisms are designed to handle any object description including any sort of slot-value combinations. ERD-QUE restricts the user to the sorts of object descriptions that are useful for this domain and this practice architecture. This reduces the cognitive load and the teaching time that would be required if the user were asked to frame the questions in the open-ended manner of QUE.

5. Preliminary Analyses of ERD-QUE

This evaluation is descriptive in nature. It aims to obtain a preliminary view of which of the developed software tools are actually used by the subjects, how often each tool is used, how effectively they use the tools, and of any problems that subjects have using the tools in trying to answer a number of questions regarding the outcome of an expert system in comparison with an alternative outcome. It is of necessity a conservative study. The basic tools of QUE are intended for use in environments designed for relatively knowledgeable users such as the designers of intelligent systems or the domain expert users of such systems. Even ERD-QUE is intended for students who would use such a system over the course of a term rather than over a brief four-hour period that includes review sessions and introductions to all of the components of the system. In addition, since ERD-QUE consists of a number of complex windows, it would ideally be deployed on a system with at least a large high-resolution monitor, rather than a 17 inch medium resolution monitor. Thus, it was realized at the outset, that subjects might have difficulties learning and using features that more experienced and/or knowledgeable subjects might not. Nevertheless, it was felt that getting a preliminary sense of how subjects used the ERD-QUE system was useful at this stage of development.

5.1 Methods

Subjects were run one at a time. Subjects were asked to complete a short pre-software-use questionnaire. (See Appendix E) The subjects were given brief reviews of how rule-based systems function and the basic processes involved in constructing entity-relationship diagrams. The review material was based on definitions, descriptions and examples in books by well-known authors (Luger and Stubblefield, 1998; Nilsson, 1998; Teory, 1994). The subjects were then introduced to the tools provided by QUE and to the tasks they were expected to perform by working through two training problems. (See Section 5.3 and The QUE User Manual, Appendix E). Depending upon the subject’s familiarity with the two subjects, the review and introduction lasted from 45 minutes to one and a half hours. The subjects were given a fifteen minute break after the review and training session.

The subjects were then asked to answer four questions for each of four entity relationship diagram problems. For each problem, the subjects were presented with an English description of the problem, and two diagrams. One diagram is labeled “Expert System Diagram” and represents the expert system’s result based upon an abstraction of the textual problem description. The other diagram is labeled “Alternate Diagram” and represents another solution to the problem that may or may not be an acceptable alternate design (See Section 4.3.3 for descriptions of these interfaces). The alternative diagrams were derived from either correct alternatives or from typical novice mistakes that have been reported in the literature (Teory, 1994; Elmasri and Navathe, 1994). In general, it is possible for there to be more than one diagram that correctly models an entity relationship problem (e.g. Problem 2 shown in Figure 24 below).

There are a number of reasons why an alternative diagram is used for this study rather than having the users create their own solution diagrams. The first reason is that the use of negative examples can be a powerful learning tool. Even those students who might not have created the alternative diagram may benefit from gaining an understanding of why it was not preferred. A second reason is that there is no way to guarantee that the user will produce a diagram that is different than that produced by the expert system. In those cases, there would be no reason for the user to ask any questions at all, no interaction with the mechanisms developed would be called for and no data would be generated for the subsequent protocol analysis. The third reason is that relatively trivial, syntactic errors in which a subject violates the basic syntax rules of ER diagrams (e.g., by connecting two relations directly to each other or by having an attribute attached to another attribute) are not of interest for the purposes of this work.

5.2 The Task

The subjects for this initial analysis of the QUE environment were asked to answer four questions for each of four ER problems. The four problems are shown in Figures 23 through 26. The four questions that subjects were asked to answer for each are:

1. Which diagram is correct, can both be considered to be correct or is neither correct? (For some entity relationship problems, it may be possible that both the alternative solution and the expert system solution could be considered correct. Subjects were reminded of this in the training session and were also told that expert systems are not always perfect.)

2. Why did the expert system create the objects that are in the Expert System Diagram but are not in the Alternate diagram?

3. Why didn't the expert system create the objects that are in the Alternate Diagram but are not in the Expert System Diagram?

4. Is the difference between the diagrams significant?

The objective of question 1 is to prompt subjects into thinking about the problem and examine the diagrams. Questions 2 and 3 ask subjects to determine why the expert system resulted in constructs that are different than the alternate diagram and why the expert system did not result in the constructs of the alternate diagram. The objective of these two questions were to encourage the use of both “Why” and “Why not” questions and to stimulate thinking and understanding of the expert system’s reasoning processes. The final question for each problem asks whether the subjects think the difference between the two diagrams is significant after investigating the system in answering questions 2 and 3.

Subjects had access to components of the QUE architecture (see Section 4.2), including views of the class hierarchy, access to the rules of the expert system in any state of the expert system’s processing, and of the trace of the system’s reasoning. Some components of the original QUE architecture were not made available. These include the ability to change the knowledge base by modifying either rules or objects, and the ability to run the system from any past context. These components were intended for system developers or more advanced users than those that participated in this study.

The subjects were able to ask “Why” on any two objects in the Expert System Diagram that depicts the system’s conclusion. The system response to this question is the rule and the context in which the object was created. Subjects were able to continue the questioning by instantiating the rule with a set of objects matching the rule constraints and asking follow-up “Why” questions on any object in the rule antecedent of interest. In this way, subjects could progress backwards through the reasoning chain in a meaningful manner. The context mechanism (see Section 4.2.1) allows the subjects to re-create past contexts in the problem-solving path for investigatory purposes.

Subjects were also able to ask “Why not” on any two objects in the Alternate Diagram. These questions should be interpreted as asking the expert system why it did not result in some construct depicted in the Alternate Diagram. The response to a “Why not” question depends in part upon the system solution path. If, for example, the object in question had in fact existed at some point in the system, QUE informs subjects when it existed and what rule changed or deleted it. If the object in question never existed, the system response is a set of rules that might have concluded the object of the question, and whether the rules ran or not. The subjects were able to retreat to past system states in order to examine the possibility of rule instantiation at past points in the reasoning process. If the rule could not be instantiated, the subjects might want to ask follow-up “Why not” on the clauses that are preventing instantiation and continue in this fashion until they had determined the ground, or most basic reason that the object in question was not concluded. Locating this difference and a possible set of rules that might have resulted in the Alternate Diagram constructs is interpreted as locating the answer to the “Why not?” question. (See Section 4.1.2 for more details on complex constraints.)

[image: image26.jpg][The ManeyLand Bark wanls ta keep track of customers,
accourts and branches in s new database. Each branch
has a e, ci. and branch ID code. Each customer has &
[name, steee, city, and urique SSN. Each account has a
cutert balarce nd s urique account numbe for the
Eranch in which s located. A customer can have several
[sccourts at one or more branches, but each accountis
lacated at a specifc ranch. An account may belang to
mare than an custome [int accourt),

[image: image27.jpg](o]

£ Expert System

[om oot wme wma v

‘ BRANCH M Has N CUSTOMER

N

accouT @ DG D

accTND) (CURRENTBAL

o | M

[image: image28.jpg]Clear WhyNotl WhyNoi2 WhyNot3 Whyhotd

BRANCH ECCOUNT. CUSTOMER

CURRENT AL

“ _>l;I

Figure 26. Problem 4 adapted from Zaïane (2001b).
5.3 An Idealized Example of Possible Actions.

This section provides a step-by-step example of the sorts of actions that a subject might perform in efforts to answer the questions posed for each of the four problems presented. This problem was one of the two training problems used to demonstrate ERD-QUE facilities and to demonstrate how a subject might approach answering the questions for each problem. Questions #1 and #4 are intended to prompt the subjects into thinking about the problem and the information they found during their efforts to answer the other two questions.

There are a number of basic actions that can be taken by a user in order to answer Questions #2 and #3. These include:

1. Asking a “Why” question from the Expert System Diagram.

2. Asking a follow-up “Why” question from the Rule Analysis Window.

3. Asking a “Why Not” question from the Alternate Diagram.

4. Asking a follow-up “Why Not” question from the Rule Analysis Window.

5. Instantiating a rule in the Rule Analysis Window with a set of objects that constitute a match for the rule’s antecedent clauses.

6. Changing to a different cycle to observe the state of the knowledge base or the possible ways a rule can match into the knowledge base.

This section gives an example of an optimal series of actions that might be taken in order to answer all of the questions for one problem presented in ERD-QUE.

When the subjects are presented with the problem depicted in Figure 27, they are first asked to answer question #1 regarding which diagram, or both may be considered to be correct. For the problem in Figure 27, the Expert System Diagram (the lower diagram) is correct.

[image: image1.png]Alternate Diagram - Training Problem 2 JS[=]E3 |} 5 Problem Description - Training Problem 2 [i[=] B3|

Clear WhyNotl WhyNoi2 WhyNot3 Whyotd

[The ManeyLand Bark wanls to keep rack of customers,
4| faccounts and branches n ts new database. Each branch
has a e and a city. Each customer has a nare. srest,

cit, and unique SSN. Each account has a curent balance
N[and & urique accourt number for the bianch n which tis

BRANCH ECCOUNT. CUSTOMER located. A customer can have several accounts at ane ar
more branches, but sach accountis located a a specific

srencR A GRANCRDITY Guwe D) N\ GrreeD o scoum

ACCTND)

CURRENTBAL

[—
Export Systom g Problem 2
Cear Whi W2 Whd Wi

iagram

BRANCH M Has N CUSTOMER

N

accouT I

accTND) (CURRENTBAL

Figure 27. Training problem adapted from Zaïane (2001a).

Then, they should use the various tools provided to determine the answers to the next two questions. Not all of the following activities are required in order to answer the questions and in QUE, there are sometimes alternative means of obtaining the same information. In other words, there is not just one set of ordered actions that must be taken in order to answer a question. There are a variety of actions in a number of different sequences that might be taken by the subject, which will result in the information necessary to answer a question. The following represents just one set of actions that a subject might take in order to answer the questions for each problem.

Question 2 – Why did the expert system create the objects that are not in the Alternate Diagram?

There are two ways to go about finding the answer to this question. The subjects may choose to review the expert system’s reasoning process. This can be done by opening the Rules and Objects Window, re-establishing the initial cycle of the reasoning process using the Cycle Menu, observing the objects that exist as initial input to the expert system and then sequentially going to the next cycle and observing the creation, modifications and deletions that occur until the expert system halted. The rule trace is provided so that the subjects know which rule ran in any one cycle. By observing two sequential states of the knowledge base and looking at the rule that ran, the subject should be able to find the series of actions that led to the construct in question.

Alternatively, the subjects could ask “Why” the expert system created a construct that is not represented in the Alternate Diagram. The subjects accomplish this by clicking on the objects they wish to ask about in the Expert System Diagram and the appropriate question template. For the problem depicted above, an appropriate question for the Expert System Diagram would be “Why is the entity, ACCOUNT, connected to the relation, HAS?”, since this construct does not appear in the Alternate Diagram. The system response to this question is that the relation, HAS, with the entity, ACCOUNT, was created in cycle 13 by rule CREATE-TERNARY-RELATIONS-1. The subject is given the opportunity to look at this rule in the Rule Analysis Window.

Upon opening that window, it is appropriate to re-establish the cycle in which the rule ran and produced that particular construct. In this case, that is cycle 13. When cycle 13 is re-established, the rule constraints can be matched by at least one set of objects in the knowledge base. If the subject chooses to view the match to the rule, the variable bindings are substituted into the rule in place of each variable. In this way, the subject can see that the ternary relation, HAS, was created from a binary relation of the same name and a prepositional modifier for ACCOUNT. The subject can then ask a follow-up “Why” question on any of the clauses in the rule antecedent. In doing this, the subject can trace backwards through a meaningful series of steps that led to the construct in the Expert System Diagram. In this case, the follow-up questions and system responses would be the following:

· If the subject asks “Why?” on the prepositional modifier, ACCOUNT, the system responds that it was initial input data.

· If the subject asks “Why?” on the binary relation, HAS, the system responds that the relation HAS was created in cycle 11 by the rule VERB-TO-RELATIONS-3.

· By examining that rule in the context of cycle 11, the subject can see that the binary relation, HAS, was created from the verb, HAS, and the entities, BRANCH and CUSTOMER.

· Asking “Why?” on the verb, HAS, reveals that it was initial input.

At this point, the subject should be able to determine that the ternary relation, HAS, connected to the entity, ACCOUNT, was the result of a prepositional modifier, ACCOUNT, an entity, ACCOUNT and a binary relation, HAS. The binary relation, HAS, was the result of a verb, HAS, which was initial input and two entities. This is, in essence, the answer to the second question.

Question 3 – Why didn’t the expert system create the objects that are in the Alternate Diagram but not in the Expert System Diagram?

In order to answer the third question, the subject should turn to the Alternate Diagram. For the problem presented above, one appropriate question to ask of the expert system would be “Why didn’t you create a relation, ACCOUNT, with entity, CUSTOMER. The QUE system responds with a list of rules that might have resulted in that construct. In this case, it finds four rules: VERBS-TO-RELATIONS-3, VERBS-TO-RELATIONS-9, VERBS-TO-RELATIONS-2, and VERBS-TO-RELATIONS-1. Upon examining these rules in the context in which the goal of the rules was instantiated, the subject should notice that they all have a common constraint that cannot be met, which is a verb, ACCOUNT.

The subject can determine which constraints can and cannot be met when the rule antecedent as a whole cannot be matched by clicking on each clause individually. If the VERB clause of any of these rules is selected, the system responds that the constraint cannot be met and suggests to the subject that more information can be obtained by asking “Why not” on this selection. If the subject follows that suggestion, the system responds that the closest object it has to the object selected is a verb, HAS and that there were no rules that could have created the verb, ACCOUNT (because verbs are initial input to the expert system). At this point, the subject should be able to answer the third question by saying that the expert system could have created a relation, ACCOUNT, if it had a verb, ACCOUNT.

Is the difference between the diagrams significant?

After answering questions #2 and #3, the subject is asked whether the difference between the diagrams is significant. This question is an effort to determine whether or not the investigation process has caused the user to think about the reasoning process of the expert system and the differences between the diagrams and possibly change her mind about which is correct. For the problem in Figure 27, the difference between the diagrams is significant. Only the expert system diagram will correctly represent joint accounts where there can be more than one customer to one account.

5.4 The Pilot Study

Two subjects were recruited for a pilot run of the experimental setting. The first was a Ph.D. student who provided some insightful comments about the system. The second subject, was a non-native English speaker, whose actions (such as repeatedly choosing inappropriate question templates for the objects selected in a diagram) indicated a lack of understanding of the task despite several interruptions for further explanation by the investigator and assurances from the subject that the task was understood.

The pilot study revealed some minor malfunctions in QUE and some omissions in the training session, which were corrected prior to running subsequent subjects.

5.5 Subjects

Eight subjects participated in the main portion of the study. The subjects varied quite a bit along all but one of the several different aspects asked about in the pre-use questionnaire. That one aspect was computer usage. All of the subjects had used computers for more than three years and all but one for more than five years.

The subjects ranged in education level from a college freshman to Ph.D. students. Three were undergraduates, one had just finished a bachelor’s degree, two were currently in a masters program and two were Ph.D. students. With the exception of one, all were students in the Department of Information Science and Telecommunications at the University of Pittsburgh.

One subject had no programming experience, one had programmed in only one language, two subjects had used two programming languages, two had used three programming languages and two had used more than three languages.

Two of the subjects had no prior experience or knowledge of expert systems or entity-relationship diagrams and were given a slightly longer review session for these subjects. Of the six others, two had only seen examples of expert systems in books and the others had, or were currently involved in, creating an expert system for a class project. One subject had some experience in creating ER diagrams as a database administrator, four had created ER diagrams for class assignments and one had only seen them in textbooks. Two subjects had no prior knowledge of ER diagrams and were given slightly extended tutorial sessions on entity relationship diagrams instead of the review session.

5.6 Results

5.6.1 Answers to Problem Questions.

The answers to the questions for the first problem were not included in these results since many subjects needed help from the investigator in approaching the first problem on their own. The answers for the questions were assigned a score by the investigator on a scale from zero to two. Zero indicated that an answer was incorrect. A score of one indicates that the answer was partially correct or incomplete. A score of two indicates a correct and complete answer. [image: image29.png]i £ Problem Description - Testing Problem 1

Acme Corp. wants to keep a database of employee and
departmental information. Each employee has a unique SSN,
name, and employee-number. Each department has a
unique dept-ID, dept-name, and budget-amt. Each employee
works in only one department at a time. & department may
EMPLOYEE MANAGES, DEPARTME have many employees, but only one employes is assigned to
manage the department. Employees sometimes change
positions and work in a different department. So we need to
keep track of the date that an employee started in a
department. There is one employee in each department who'

@ . START-DATE
manages the department and we want to know when the

WORKS »INN i lemployee started managing the department.

ONE_— M

START-DATE

empLovee[-2NE TIANAGES

M1 DEPARTME
=
NG oD Gaim @
START-DATE
\~_@ |
M orks Y

The first question that each subject was asked to answer was intended to get the subjects to thoroughly read the problem description and examine both diagrams. There were only five instances out of the 24 answers (three problems for eight subjects), that this answer was not completely correct. (See Table 2.) The last question (#4) was intended to see if subjects’ opinion regarding the correctness of the diagrams changed after investigating the expert system’s processing in order to answer questions #2 and #3. In four of the five cases in which subjects’ answers to question #1 were less than fully correct, the corresponding answer to question #4 indicated that the subjects’ understanding of the problem improved.

The second question asked subjects to determine how the expert system arrived at the construct in its diagram that was not observed in the Alternate Diagram. Overall, seven answers out of 24 were considered incomplete and none were incorrect.

The third question asked subjects to determine how close the expert system came to arriving at the diagram depicted in the Alternate Diagram. This question was more difficult to answer because it asked how something might have happened. Seven of the 24 answers were considered incomplete and one was incorrect.

[image: image30.png]Expert System
Cear Wyt

PERSON

gram - Testing Problem 2
Wh2 Whd Whd

ENGAGES N

M

[=[of>]

ONE

PERSON'NO

ACTMTIES|

TIME SPEN WEEKND

FELATETD: PROJECT

PROJECTNO

)

‘Alternate Diagrar
Clear WhyMoll

PERSON

esting Problem 2
Whyot2 Whyhot3 WhyMotd

I3 || < Problem Description - Testing Problem 2 1M[=] B3

PERSON'NO

WORKS TN

TIME SPENT (WEEKND

PROJECT

PROJECTNO

[RBC Company wants ta ack the fime that each persan n
the company spends on the projects that they are assigned
to. Each person engages in actives which relste to
proiects. Each person i dertfied by a persorno. The
ity of a person on a proect or each week is ecorded
s ine spent or 2 paticular week. which are represented by
[rumbers Each project is deriiied by project numbe.

When the sum of the scores for each subject for questions #2 and #3 are correlated with the characteristics of the subjects, it shows that the education level attained by subjects correlates well with the total score on these questions (Table 3). Not surprisingly, education level also correlates highly with the number of programming languages used, the type of experience with expert systems and with ER diagrams.

5.6.2 The Log File Data[image: image31.png]Expert System
Cear Whyl W2 W3 Wh

=[]

CHEMIST M “WORKS-ON- N EXPERIMEN ONE HAS N NOTEBOO!

il | I,
‘Altermate Diagram - Testing Problem 3 S E
Clear Whyoll WhyNol2 WhyMot3 WhyMotd

CHEMIST M “WORKS-ON- N EXPERIMEN QUE HAS i NOTEBOOK] =
e) (IDAUMBER ExpabieeR (La8-RO0M BARCODE D

Miises d
« Problem Description - Testing Problem 3 B[] B

J&cheist may be sssigned o more than one experimen at
[ary one time and any expeiiment may have mote than one
hemist assigned t 1. Far each chemist we need ta keep an
1D-rumber and his/her name. Each experiment is assigned
an EXP-rumber and a ab room. The resits and notesfor
each experiment are ecorded n notebosks tha are used by
al o the cheists working on that experimert. Each
Inotebook.is assigned » Bar-code number and stored. Any
lon experiment may se up more than one notebook. The.
[database should nclude the deta forthe cherists, the
lexperiments and the nolebocks.

The log files that were kept by the system to document subjects’ actions proved to be less useful than was anticipated. The total number of times each subject used a facility of QUE is shown in Table 4. Both the total number of times that a subject used a facility and the sequences of actions taken by subjects failed to reflect the overall success of subject for the task. The reasons for this unexpected result may have been due an unanticipated aspect of some of the subjects. Specifically, some subjects had a certain personal motivation for participating in the study.

Some subjects, who did seem to stay relatively focused on the task at hand, even when they did not have much experience in the subject matter, had log file data that was expected. These subjects (1, 2, and 8) had log files that showed mostly appropriate activity even though their question scores varied a good bit. For example, Subject #1 who was a freshman with little programming experience performed actions almost all of which were considered appropriate. However, this subject failed to ask sufficient follow-up questions in order to construct lines of reasoning by the expert system. This subject seemed to understand the task but would perform only one layer of investigatory activities and provided no interpretation of the system responses. Subject #2’s activity could also be considered as mostly appropriate, but as the data in Table 3 indicates, this subject utilized each facility more than subject #1 and gave more thorough answers to the problem questions than did subject #1. Subject #8 exhibited an overall pattern of actions similar to that of subject #1 in that it was appropriate and concise. However, subject #8’s answers to the questions demonstrated a depth of understanding that was lacking in subject #1’s answers.

Other subjects’ actions indicated a lot of “stray” activity. These subjects could be usefully categorized into two groups. One group included two subjects, who seemed to have a good bit of trouble understanding the task and the expert system rules. The subjects in this group (#6 and #7) and asked for help from the investigator repeatedly during the session. This group’s actions included many that appeared to be undirected.

The other group whose log files showed a good bit of stray activity included three subjects (#3, #4 and #5) who revealed in conversation with the investigator, that they were currently involved in writing expert systems for class projects. It could be inferred that this group was highly motivated to gain an understanding of an expert system, since they had to create one themselves. Even though this group’s log files show a lot of activity that sometimes seemed to have little or nothing to do with the task at hand, they scored very well on the problem questions and in their overall understanding of the expert system’s functioning. In retrospect, this groups’ seemingly “stray” actions could be interpreted as efforts to find out as much as possible about how the expert system worked in general, rather than focusing on the specific problems that were posed. For example, one subject’s (#4) actions were classified by the investigator at the time of testing as “systematically and methodically” trying to find out as much as he could about the expert system. This note was written after the subject had obtained sufficient information to answer the questions for the first problem but spent another twenty minutes using the system facilities to choose questions that were inappropriate for the problem at hand. (For example, asking “Why” on every construct in the Expert System Diagram.) This subject’s objective seemed to be to examine as many rules and objects as he could until being called back to task by the investigator. At that time, he promptly (and correctly) answered the questions for the problem and went on to do so for the remaining problems.

Another subject (#3) in this group used the cycle menu to change cycles very often (66 times in total). However, this subject seemed intent on observing how a rule antecedent matched into the knowledge base in successive cycles. The overall pattern of usage of this facility for this subject was similar in appearance to that of subjects #6 and #7 who utilized this facility 42 times and 39 times respectively. However, subjects #6 and #7 showed little understanding of the task overall, and little understanding of the expert system rules. Subject #7 didn’t even try to answer the question on the post-use questionnaire regarding overall understanding of the expert system.

5.7 Post-Use Questionnaire Answers, Comments and Suggestions

The Post-Use Questionnaire (Appendix E) asked the subjects to rate the various facilities that they used and the overall difficulty of the task, to answer a question about their understanding of the domain expert system and to provide comments about the facilities.

5.7.1 Answers to Rating Questions

Most subjects indicated that they were quite satisfied with the question templates provided, but some indicated that they would have liked to be able to ask “Why” or “Why not” on an individual object rather than on pairs of objects as required by the question templates on the Expert System and Alternate Diagrams.

The Rules and Objects Window was the least used facility in the system. Only two of the eight subjects ever used it and only one used it to any significant degree. It is interesting to note that these facilities are a prominent part of what most knowledge-based development environments provide.

[image: image32.png]Expert System Diagram - Test

Cear Whyl Wh2 Wha

ACCOUNTNUMBER

ACCOUNT

OVERDRAFT AMOUNT

CHECKING ACCOUNT
L

BALANCE)

INTEREST-RATE

SAVINGS ACCOUNT
L

Clear WhyNotl WhyNoi2 WhyNot3 Whyotd

B
BALANGE) J

ACCOUNTNUMBER

ACCOUNT

OVERDRAFT AMOUNT INTEREST-RAT

ACCOUNT-TYPE

05

esting Problem 4 (=1 K3

Famers Bank s 3 mal nelocaton bark tat senvices
o sma commurity. Allof 1 berk aceotis have boih
coountumbers and curentbslances. & savina:

account i »specel kind o Famers Bark accourt that

e an herestiate. A checking sccount s &

specil kind of Famers Bak accout tha oo has
overaitamount Oy savings ot have rerest

rates and only checking accounts have overdrat-

amourts. A sceount s b of oneof he s

(savigs o checking) b annot be o both bpes at

e same e, a hey arediiat/mutaly excisve,

For he puposes of s atabase hey st ko

eshaustv, i tht there are o aherkinds of benk

oot besides th two mertoned sbove We war o
keeh a dtabase o allf e accouris f Famers Berk.
rcidng wht pe they ae,and the valies cf o |

Two of the eight subjects indicated that the Rule Analysis Window was unsatisfactory. The subject comments accompanying this question indicated that the rules were difficult to understand. Some subjects suggested that the rules should be stated in natural language and two suggested using color to help highlight certain words or to highlight the variables in the rules. Most (six of the eight) rated the Message Pane on the Control Window as being useful for keeping track of their actions and the system responses. Most of the subjects (six of the eight) thought that the tasks they were asked to do were quite difficult. Only two rated the task as being “Neither easy nor difficult”. Most thought the expert system was “Rather competent”, giving it a six or a seven rating on a scale of one to seven.

Table 6 shows the scores of the subjects’ answers to Question #10 on the Post-Use Questionnaire (on a scale of zero to five). Subjects #6 and #7 scored zero on this question. Subject #7 left it blank. These two subjects were those who also scored low on the problem questions and showed a good bit of “stray” activity. Subject #2’s score on this question was low because it described how expert systems work in general rather than describing the function of the domain expert system of ERD-QUE. The remaining five subjects all scored rather well on this question.

In addition to the log file data and answers to questions for the problems and questionnaires, subjects provided some anecdotal information in the form of the questions they asked and verbal comments they made to the investigator. One piece of anecdotal evidence that is important for this overall line of research is that three of the subjects, either added comments to their problem answers or questionnaires or made verbal comments to the investigator that indicated that they had correctly identified the limits of the ERD-QUE expert system. Two of these subjects were from the “highly motivated” group discussed in Section 5.6.2. The third of these subjects was Subject #8 who was just finishing a masters degree and was also working full-time as a programmer.

This is a promising outcome of this preliminary observation of the QUE tools since one of the original goals of the QUE system was to provide tools so that the knowledgeable user might be able to gain an understanding of the overall competence of an expert system. Even in a tutoring environment, it can be useful for a student to be able to grasp the scope of the knowledge that an ITS is presenting.

5.7.2 Comments and Suggestions

The low level of interaction was frustrating to some subjects. One subject wrote “It is too much like programming.” regarding the difficulty of interpreting the rules. There are a number of ways that this problem could be addressed. One approach follows the suggestions by two subjects that the important parts (e.g., variables and instantiated values) of the rule constraints be color-coded. This approach had been implemented in the prior QUE implementation. Variables in the rules were color-coded in order to make the constraints that were realized by the use of variables more visible. (Such constraints either use the same variable in two object clauses, which restricts the value bound to the variable to be the same, or use a variable in a test clause constraint.) Using a separate color for each different variable in the rule facilitates easier recognition of these sorts of constraints. It was not implemented in this version because the interface used prohibited font-color change for individual items.

Another comment made by subjects regarding the understandability of the rules, requested that the rules be stated in natural language format. It should be feasible to devise sentence templates state the rule constraints in a more English-like syntax. However, the complex nature of the rules might lead to equally complex sentence templates.

A problem that was observed was that sometimes subjects forgot where they were in their line of questioning. Two subjects asked for help from the investigator when they forgot what their goal was in the midst of asking follow-up questions and others were observed making comments to themselves that indicated similar difficulties. For example, one subject said “I forget why I am looking at this.” Another subject suggested in the post-use questionnaire that there should be some means of “linking” (keeping track) of actions and responses that related to one line of questioning. The current implementation does this is in a relatively subtle fashion by successively indenting the user actions and system responses. The anticipation was that follow-up questions and actions would appear as an outline. However, a problem occurred when users took a large number of actions on a single problem. When this occurred, the indent amount became so great that the messages in this pane wrapped around and were no longer meaningfully indented. Another problem is that the message pane had information regarding many of the subjects’ actions as well as the subjects’ questions and system responses. Restricting the information in the message pane to only subject questions and answers would help. Another approach to the problem might be a hierarchical graph of questions and follow-up questions whose nodes contain information about the question and the system response. This solution had been implemented in the earlier version of QUE but was not incorporated in ERD-QUE because of the number of windows already on screen.

Contributing to the “lost line of questioning” problem is the fact that keeping track of the line of questioning is only one set of things that the subjects had to keep in mind. The subjects were using an environment that was new to them and the environment itself requires users to perform a series of steps in order to find relevant information. These steps include actions such as changing to an appropriate cycle and instantiating a rule with an appropriate match. Keeping this series of steps in mind while keeping track of the current line of questioning requires a good bit of mental effort. It is not surprising that subjects forgot to perform certain steps or forgot why they were looking at a particular rule.

5.8 Discussion

This qualitative first study of the QUE facilities furnished a demonstration of the tools and mechanisms of QUE within a particular application. The information obtained from subject using the tools within this environment provided some interesting direction for further development and some guidance for conducting further studies. The future development aspects will be discussed in Section 6.

This preliminary study was limited in a number of aspects. The limitations include the limited number of subjects, the variability of the subjects, particularly in terms of education, motivation and personal agendas, the limited amount of time available for the subjects to learn a rather complex environment, and some limits regarding ERD-QUE itself. Due to the nature of this study, some caution must be exercised in drawing any conclusions.

The tendency for the “highly motivated” subjects to do better in answering the problem questions, demonstrating good understanding of the expert system functioning and demonstrating an understanding of the limits of the expert system coincides with previous findings regarding motivation and utilization of explanation facilities (Gregor and Benbasat, 1999). Gregor and Benbasat found that only users who had motivation to understand an expert system would utilize explanation facilities of expert systems. This coincides with the large number of actions taken by subjects #3, #4 and #5.

This may also partially explain a tendency towards some frustration on the part of the subjects who were not in the “highly motivated” group. QUE provides an exploratory environment and therefore requires effort on the part of the user. With a short time to learn the system and no real short-term or long-term benefits to learning either the QUE environment or the domain material, these subjects had little reason to expend substantial energy in trying to do so. Zouaq, Frasson, and Rouane (2000) recognized the additional effort required from users of their system who had to perform an additional time-consuming task in order to obtain explanations from the system. Zouaq et al. tried to compensate for the additional effort by providing positive feedback messages to users who did so. However, if the lack of correlation between the log-file data and the success of a subject at the task in this preliminary study is any indication, it is difficult to imagine how a system such as this could recognize constructive versus aimless actions and provide positive feedback for the former.

ERD-QUE has limits in terms of the nature of the system. ERD-QUE requires a substantial number of actions that must be performed in order to obtain pertinent information (e.g., asking a question, changing to an appropriate cycle in the system, finding the appropriate instantiation for a rule, etc.). This places a significant cognitive load on the subjects in addition to the demands of the overall task.

The task itself was also somewhat artificial. The nature of the questions that subjects had to answer prompted them to use at least some of the QUE facilities. Some subjects were very hesitant to use the “Why not” question facilities and some never did seem to thoroughly understand its purpose and meaning. The extreme case of this phenomenon was the second subject in the pilot study who said “I think I will not use that <Why not question>.” However, previously stated limits prohibited a more natural setting in which students who had a goal of learning ER diagrams could construct their own answers to problems and question the system when they desired.

Given all of those limitations, the fact that some subjects were able to identify the limitations of the expert system was quite promising. The comments and suggestions from the subjects provide constructive direction for future development.

6. Discussion and Future Directions

6.1 Summary

The primary goal of this work was contributing to the research into explanation facilities for expert systems by the development of an environment and mechanisms that assist in answering “Why not” types of questions for rule and object-based systems utilizing the full representational potential of the rule- and object-based paradigm. This type of question is more difficult for a computational system to answer than are other types of questions because the answer does not follow directly from the knowledge base or the reasoning path of the system. More specifically, a computational system encounters difficulty because there are, in general, an impractically large number of possibilities to consider. Earlier systems that have provided answers to this type of question have simplified some of the complexity of answering this type of question by limiting the actions that can be asked about, by limiting the representations utilized and by dealing only with monotonic reasoning in which knowledge is not modified or deleted. The approach taken in QUE seeks to overcome these limits and extend “Why not” question facilities to a wider range of systems.

A part of the approach taken in QUE for dealing with the number of possibilities that might have to be considered in answering “Why not” questions is the exploratory style of environment provided in QUE. This environment puts the user in charge of some of the choices that might need to be made regarding interesting paths to pursue based upon the user’s own knowledge and/or assumptions, rather than leaving these choices to the system.

The other part of the approach is provided by the QUE question facilities, interfaces and mechanisms which determine which rules could have resulted in the user expectations, and provide the means to ask follow-up questions on interesting parts of those rules. The context mechanism allows re-establishment of any past system cycle so that any rule could be examined in any prior state of the knowledge base. The interfaces allow for full or partial instantiations of rule antecedents that can be used in follow-up questions. By asking follow-up questions, users can follow a failed line of reasoning as much as necessary back to initial input conditions. The constraint relaxation mechanism furnishes comparative information regarding objects that were close matches to objects that were not in the knowledge base but were needed by a rule in order to result in the user-anticipated conclusion.

The issue of nonmonotonicity is addressed by the context mechanism. The context mechanism facilitates the answering of “Why not” types of questions in systems that create, modify and delete objects during the reasoning process by allowing the user to re-establish past states of the reasoning process. The context mechanism tracks the creation, modification and deletions of all objects in the expert system’s reasoning path. This is accomplished by the addition of slots to each class of objects in the knowledge base which keep information regarding the objects’ existence over the reasoning path. The actual implementation of this mechanism dispatches the creation, modification and deletion actions of the rule to functions which maintain all of the objects created during the expert system’s reasoning path, record creation and deletion actions and indicate to the expert system which objects are actually available for use in any particular state. This allows the user to examine the objects as they existed at any particular point in the expert system’s reasoning path as well as the rules and they matched into any particular state of the knowledge base. This facility assists the answering of “Why not” questions in a variety of ways. For instance, it may be the case that the user-anticipated result may have been possible at an earlier state in the reasoning path, but was blocked by another action that eliminated the possibility. By re-establishing the past state in which the blocking action occurred, the user can examine how the conditions of the rule that fired matched the knowledge base and identify the conditions that caused the elimination of the user-anticipate result.

As mentioned above, QUE addresses issues involved in answering this type of question in systems that utilize the full potential of rule- and object-based systems that result in more complex representations in the rules. There are two issues that arise from the type of rule used in such systems. One is that rule retrieval is more difficult because the rule consequents utilize variables in actions involving complex objects. Thus, the components of the rule consequent will rarely match the user-anticipated result exactly and the system must locate rules that act on the same types of objects of interest to the user.

The second major involves determining how close the system was in arriving at the user-anticipated conclusion. When the rule constraints are more complex in nature, identification of how constraints might be changed in order to result in the user’s result is more difficult due to the complexity of the representation, the possible interdependency of constraints and the different types of constraints that may be encountered. One premise upon which this claim is made is the following. In complex rule representations the clause that is apparently blocking the antecedent as a whole from matching may not be the one that should be changed in order for the entire antecedent to be matched. Perhaps a minor change in a constraint in an earlier clause that can be matched will allow the entire match to go through. Deciding which constraints to relax in order to find a possible match is more difficult in systems with more complicated rule representations.

The claim of increased difficulty is also based upon another premise stemming from the complicated constraint representation. Since rule- and object-based system constraints can be based on qualitatively different types of values and even on entire objects, once the decision has been made regarding which constraint should be changed, a second problem remains. That problem is determining how the constraint might be changed in order to allow the user-anticipated result to go through. When dealing with qualitatively different constraints which include numeric values, discrete values, scaled values and even complete objects, how to go about changing them is not as clear cut as it is in earlier systems which have dealt with this question in systems with simpler representation schemes.

The approach taken to these issues was the development of general mechanisms that assist the user of a rule- and object-based system in identifying failed constraints that might have led to the user-anticipated result and that furnish information regarding the objects in the knowledge base that are closest to the failed constraints. The approach utilizes information regarding the types of constraints in rule antecedents and the meaningful ways in which the constraints might be relaxed in order to locate closest matches. Identification of this sort of information regarding how to go about finding close matches and the development of mechanisms that utilize this information resulted in the constraint relaxation mechanism of QUE.

There were two possible sources for the information that is utilized by the relaxation mechanisms – the end-user and the expert system developer. In some scenarios in some types of systems, the user may have preferences regarding which constraints to vary in attempting to find a close match. In other situations, a developer may be able to explicitly describe aspects of the system’s knowledge representation that the relaxation mechanisms can use. The initial implementation and application of the QUE environment developed in this work employed the latter. When the developer has included relaxation information, the system will be able to, at varying levels of granularity, instruct the relaxation functions when to hold a constraint constant, relax it freely, relax within certain limits and/or relax it by certain increments. Once it has been determined which constraints should be relaxed, additional information regarding the nature of the constraint is used by the constraint relaxation mechanisms to relax the constraint.

The constraint relaxation mechanisms are used in the following manner. When QUE is asked a “Why not” question, involving a set of clauses, it first identifies the constraints in the clauses. The constraints may have been expressed by constants, by the use of the same variable in more than one place in the set of clauses, or by the use of variables in test clauses. Once QUE has identified the constraints, it identifies the slots involved, looks for the developer-provided information and relaxes constraints accordingly in order to provide the user with an idea of how close the system was to arriving at the user-anticipated result.

The context mechanism and the relaxation mechanism are components of the QUE environment, which also includes interfaces designed to facilitate user investigation of the functioning of an expert system. Interaction with the QUE facilities typically begins at the end of an expert system’s processing. The current implementation of QUE provides functions for the user to find the answers to “Why” and “Why not” types of questions. Both types of questions can involve objects of some complexity such as objects that have other complete objects as values of slots. If the user asks a “Why” question on some aspect of the expert system’s result, the system reports the rule that created it and the cycle in which it occurred. The user can opt to see the rule that created it in the context (or state of the reasoning path) in which it occurred in the Rule Analysis Window. This window allows the user to examine which knowledge base objects matched the rule antecedent in order to produce the result in question. The user can delve further into the system’s reasoning by asking a follow-up “Why” question on any instantiated clause of the rule that is of interest to the user. In this fashion, the user is chaining backwards through portions of the system’s reasoning that are of interest to the user.

If the user asks a “Why not” question about an anticipated result that was not a part of the expert system’s conclusion, QUE first checks to see if any such object description currently exists or existed in past states of the reasoning process. If such an object existed in the past, but was deleted or modified, the system reports the cycle and the rule that eliminated the user’s anticipated result. Again, the user can use the Rule Analysis Window to determine which knowledge base objects caused the action to occur. If no object matching the user-anticipated result ever existed in the knowledge base, QUE looks for rules that might have produced it. If such rules are located, the user can examine these rules in any cycle of the reasoning path in order to determine which rule is most likely to have produced the user’s result, and how the rule(s) match the knowledge base. The user can ask follow-up “Why not” questions on any set of rule constraints that cannot be met and are of interest to the user. Again, the system will try to retrieve relevant rules for user investigation. In this fashion, the user is chaining backwards through a possible reasoning path, using his own assumptions and interests as a guide. Allowing the user to drive the direction of the interaction is made possible by the exploratory interaction style of the QUE environment.

In addition to this type of interaction, when a “Why not” question is asked, the system also reports the closest matches to the failed set of constraints in order to inform the user how close or how far away the state of the knowledge is from this set of constraints.

A preliminary observational study of how users interact with the facilities within a particular application (ERD-QUE) was undertaken with somewhat mixed results. The overall task was recognized to be rather difficult - requiring users to use an environment to which they had never been exposed and depended upon the users being relatively knowledgeable in entity relationship modeling and expert system reasoning. It is not surprising then that some subjects had significant trouble understanding the task and interpreting the rules of the underlying expert system. Even so, most subjects were somewhat successful at the tasks and subjects who had more experience with the fundamental concepts of expert systems and with the domain involved performed better. The most promising outcome of these observations for the overall QUE architecture was that subjects who were knowledgeable and had motivation to learn about the functioning of an expert system were able to not only obtain a correct understanding of the underlying expert system’s reasoning methods, but also able to identify the system’s limitations. Since the overall goal of the QUE architecture has been the development of an environment that contributes to user understanding of an underlying expert system’s functioning, it appears that the QUE concepts by and large have potential in at least some scenarios.

As an illustration of the overall potential of the QUE architecture, the current implementation is limited in a number of ways. These limitations include the exploratory nature of the system, which requires a significant amount of effort on the part of the user, the relatively raw nature of the information provided, the limited scope of the domain expert system and the exclusion of some of the QUE functionalities.

Given those limitations, the initial observations of QUE use were encouraging enough to warrant continuing system development by addressing some of these limitations and served to provide insight into the directions for future system development.

6.2 Discussion

In the multi-dimensional space of research into explanation facilities for intelligent systems, any one line of research has focused upon some subset of the many different aspects of explanation. Some of these different aspects are the topic to be explained, the type of interaction available or desired and the goals, beliefs, assumptions and prior knowledge of both parties. This work focused on a user-driven environment (such as those described in Section 3.1.2.1) that can assist with aspects of answering “Why not” questions (Section 3.3) for one specific problem-solving and representation paradigm. This user-driven environment circumvented many of the linguistic aspects of explanation that have been dealt with in systems that generate explanations. This environment limits the usefulness of QUE. However, it is anticipated that the low-level approach taken in QUE might prove valuable in a number of different scenarios and might be amenable to use in conjunction with systems that address the linguistic aspects of explanation.

System-generated explanations utilizing natural language and other media (See Sections 3.1.1 and 3.1.3) have the advantage being very usable. However, in order to respond in manner that is interpreted as being appropriate, such systems either must address issues regarding models of discourse such as why the user is asking the question, or must limit the questions that can be asked to developer-anticipated questions whose meaning is pre-determined.

QUE is designed for systems that perform some type of problem-solving as opposed to those that contain only static knowledge, and does not limit the user to asking about only some portions of the system. However, as indicated by the observational study, the style and level of interaction provided in the QUE environment is not appropriate for all types of user. In order to obtain information in the QUE environment, the user must be familiar with rule- and object-based systems and must put forth effort in order to satisfy his concern because the information provided by QUE relies on the syntax used in the expert system itself.

Issues such as why the user is asking the question are not considered applicable in QUE because the user is given the opportunity (and responsibility) to probe portions of the expert system that the user deems appropriate or significant, using the tools of QUE. Rather than focus on discourse issues that are appropriate for a particular domain, the expert system developer who wishes to use the QUE environment must supply general ontological information (including domain ontologies as well as simpler forms of information such as scales of measurement) in terms that would be familiar to the intended users.

It remains an open question whether issues such as the goals, plans, beliefs and assumptions of the user can be reflected in the system syntax approach of QUE. These issues play important roles in planning systems (including dialogue planning) but vary substantially in the roles they play in different domains and different types of problem-solving. For example, if the user is trying to determine why a clause cannot be met in order to produce a certain action, QUE has the potential to help the user whether the clause refers to a goal (or other mental construct) or to some aspect of the current problem in the domain. However, whether these issues can be adequately and practically represented within the syntax of the expert system has yet to be determined.

There are other open questions regarding the QUE environment. One is how the general approach and mechanisms of QUE might be integrated with the linguistic approaches to explanation. Another is how the general approaches in QUE might be augmented with higher level functions that allow the system to assume some of the control of the mechanisms which are left to the user in the current implementation.

6.3 Future Directions

The promising preliminary study of one implementation of a subset of the QUE tools provides motivation to continue the development of the environment. There are a number of improvements and modifications that could be made to the ERD-QUE environment and a number of possible applications that could further demonstrate the potential of the QUE architecture. First, some improvements could be made to both the user interface and the underlying mechanisms of the current implementation. Second, besides further development of ERD-QUE, there are a number of different types of applications of QUE that could be developed in order to further demonstrate and evaluate its effectiveness.

6.3.1 Further Development of ERD-QUE

No one set of interfaces to the QUE mechanisms is likely to completely satisfy all possible types of users in all possible situations and there are a number of improvements that could be made to ERD-QUE based upon subject comments and observed problems. Additionally, ERD-QUE could be embellished in order to be utilized as a full problem-practice environment.

Although the claim is made that the basic concepts and mechanisms in QUE can be of value to many different types of users, from a end-users to expert system developers, the rudimentary style of the interfaces to these mechanisms was clearly not satisfactory to all of the subjects who participated in the preliminary assessment of its usage. There are a number of ways that the interface to the mechanisms could be made more understandable to less knowledgeable users. Development along these lines could start with some of the subjects’ suggestions and comments. Most notable among the comments were the difficulty encountered by some subjects in interpreting the meaning of the rules and the difficulty encountered by some in keeping track of their lines of questioning.

Following subject recommendations regarding the difficulties encountered in understanding the rules, separate colors for each different variable in the rule could be used to facilitate easier recognition of constraints implemented by multiple appearances of the same variable. Another suggestion was that the rules be stated in natural language. Sentence templates could be devised that state the rule constraints in a more English-like syntax.

Some subjects requested additional question templates so that they could ask about individual objects in the diagrams rather than on pairs of objects as is required in the current implementation of ERD-QUE. This capability could be easily added to the system.

The Message Pane could be improved or an additional interface designed to ease the problem mentioned by some subjects regarding loosing track of their line of questioning or investigation. In addition to providing a more concise way to keep track of a line of questioning, there are a number of ways that the overall cognitive overload problem could be addressed. These approaches require more initiative on the part of the system. For example, whenever a rule is brought up in the Rule Analysis Window as the result of a “Why” question, the system could automatically re-establish the cycle in which the rule fired and select the instantiation that fired. For “Why not” questions, the system could at least attempt to select an appropriate cycle. The users should still retain the ability to re-establish past cycles since some subjects did use this facility in deliberate and purposeful ways, and since the system selection of a cycle may not be optimal.

A more ambitious undertaking would be to try to flesh out both the underlying QUE mechanisms and the ERD-QUE environment in order to provide a true problem practice environment. Further means of enhancing the QUE mechanisms in order to improve the system responses are discussed in the following section (Section 6.2.2). ERD-QUE could then be rounded out in the following ways. Instructional material could be included and each module of instruction could have a number of entity relationship modeling problems associated for the user to try. A diagram-drawing interface would allow users could input their own solution to the entity relationship problem described. After the user was satisfied with his diagram, the expert system diagram would be presented and the user could then ask “Why” and “Why not” questions of the expert system. The current, rather limited ER diagramming expert system would need to be augmented in order to be more robust and be able to handle a wider variety of problems. Ultimately, one could envision a pedagogic module that would utilize the QUE capabilities in order to provide input to and analysis of a student model. The pedagogic module would use the amount of constraint relaxation necessary to arrive at the student answer to select teaching responses to a student’s solution. Subjective evaluations as well as performance evaluations could be performed if the implementation were robust enough for classroom trials.

6.3.2 Further Development of the QUE Mechanisms

In addition to the interface modifications that could be made to the system, there are more fundamental modifications that could be made to the underlying mechanisms in order to more directly furnish meaningful answers to “Why not” questions. These modifications go much deeper than the changes suggested in the previous section. The suggestions here are dependent upon developing means for the system to recognize certain commonalities amongst the constraints of the rules that it has located and to project possible actions.

For example, currently, when a set of rules is retrieved in response to a “Why not” question, in some cases the rules retrieved have a clause in common. In ERD-QUE at least, this common clause was also a constraint that could not be satisfied and subsequently was the answer or a part of the answer to Question #3. If the system could locate such common clauses after retrieving the rule set corresponding to a “Why not” question, the system could directly report the existence or non-existence of the objects that match those clauses. This would eliminate the steps that the user now has to take in order to recognize common clauses in the retrieved rule set and to find out which constraints in each rule can not be met.

System development could be extended even further if the system could relate follow-up questions to the original question. For example, in ERD-QUE, when the system has located close matches to a unmatchable clause in a rule that might have created the user-anticipated result, the system could also furnish more information as to how those closely matching objects were utilized in the system. Perhaps the close objects resulted in the system deleting or negating the user-anticipated result or were used in creating objects that were close to the user’s expected result. Supplying this information would be another step in furnishing more cooperative answers to “Why not” questions.

6.3.3 Future Implementations Based on QUE

The preliminary results of the use of the QUE mechanisms showed some promise for users who were knowledgeable and had motivation to use the tools. ERD-QUE represents only one point in a broad spectrum of possible uses of these mechanisms. As discussed in Section 6.2.1, there are a number of dimensions along which ERD-QUE could be developed and analyzed further once the initial interface issues have been addressed. There are also a number of other applications that could be developed based on the QUE architecture.

A most natural direction to pursue would be to utilize the QUE mechanisms in the same sort of problem practice environment as ERD-QUE, but in a different domain. In order to pursue this direction, a problem-solving expert system for problems in another domain would need to be implemented and appropriate interfaces for problem solutions and user questions developed. The underlying QUE question and context mechanisms, system responses and rule and object interfaces should be able to be utilized with little or no modification. Another qualitative analysis of subjective evaluations similar to that described in Section 5 could be performed.

A second direction dispenses with the problem practice environment and uses the QUE mechanisms as debugging tools within an expert system development environment. Facilities to initiate questions could be added so that system developers could use the QUE facilities to check and debug the functioning of an expert system that they were building. The system could be utilized by students who are required to construct expert systems for class projects.

A third direction would furnish the QUE mechanisms to domain experts in order to evaluate the performance of an expert system, and modify it if they so desire. This concept is similar to that proposed by Richards (2000) who describes a system (MCRDR/FCA) based on ripple-down rules (See Section 3.1.2.1). She suggests that such a system can facilitate the re-use of knowledge by allowing the user to understand, inspect and then modify an existing system in order to coincide with the user’s particular requirements and tasks. QUE could extend that type of system because of the more complex rules and objects that are dealt with by QUE and the additional facilities furnished by the Context and Relaxation Mechanisms.

The QUE architecture has potential use in a wide variety of applications and domains within the rule- and object-based reasoning paradigm. It is anticipated that the basic concepts might be applied in other symbolic reasoning paradigms and that the work presented here can contribute to the overall problem of intelligent system explanation.

7. References

Arens, A., Hovy, E. & Vossers, M. (1998) On the knowledge underlying multimedia presentations. In M. Maybury and W. Wahlster (Eds.) Readings in Intelligent User Interfaces. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 157-170.

Austin, J. L. (1962) How to Do Things with Words. Cambridge, MA: Harvard University Press 160-161.

Bares, W. J. & Lester, J. C. (1997) Realtime generation of customized 3D animated explanations for knowledge-based learning environments. In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference. Cambridge, MA: MIT Press, 347-534.

Baroff, J., Simon, R., Gilman, F., & Shneiderman, B. (1988) Direct manipulation user interfaces for expert systems. In J. A. Hendler (Ed.) Expert Systems: The User Interface. Norwood, NJ: Ablex Publishing. 99-125.

Bateman, J. A. (1995) On the relationship between ontology construction and natural language: a socio-semiotic view. International Journal of Human-Computer Interaction. 43, 929-944.

Bell, B. (1999) Supporting educational software design with knowledge-rich tools. International Journal of Artificial Intelligence in Education, 10, 46-74.

Brown, J. S., Burton R. R. & de Kleer, J. (1982) Pedagogical, natural language and knowledge engineering techniques in SOPHIE I, II and III. In D. Sleeman & J. S. Brown (Eds.) Intelligent Tutoring Systems. London: Academic Press, 227-279.

Brown, J. S., & VanLehn, K. (1988) Repair theory: a generative theory of bugs in procedural skills. A. Collins and E. E. Smith (Eds.), Readings in Cognitive Science: A Perspective from Psychology and Artificial Intelligence. Morgan Kaufmann Publishers, 338-361.

Buck, L. (1989) Human operators and real-time expert systems. Expert Systems, 6(4), 227-236.

Carbonell, J. R. (1970) AI in CAI: an artificial intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems. 11(4), 190-202.

Cawsey, A. (1992) Explanation and Interaction: The Computer Generation of Explanatory Dialogue. Cambridge, MA: MIT Press.

Chandrasekaran, B. (1986) Generic tasks in knowledge-based reasoning: high-level building blocks for expert system design. IEEE Expert. 1(3), 23-30.

Chandrasekaran, B. & Johnson, T. R. (1993) Generic tasks and task structures: history, critique and new directions. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 233-272.

Chandrasekaran, B., Josephson, J. R. & Benjamins, V. R. (1999) What are ontologies, and why do we need them? IEEE Intelligent Systems, 14(1), 20-26.
Chen, P.P. (1976) The Entity-Relationship Model – Toward a Unified View of Data. ACM Transactions of Database Systems 1(1), 9-36.
Cheng, T. C-H. (1998) Some reasons why learning science is hard: Can computer based law encoding diagrams make it easier? In Barry P. Goettl, Henry M. Halff, Carol L. Redfield & Valerie J. Shute (Eds.) Intelligent Tutoring Systems:4th International Conference: ITS'98. Berlin: Springer Verlag, 96-105.

Clancey, W. J. (1997) The conceptual nature of knowledge, situations and activity. In P. J. Feltovich, K. M. Ford & R. R. Hoffman (Eds.) Expertise in Context: Human and Machine. Cambridge, MA: MIT Press. 247-291.

Clancey, W. J. (1983) The epistemology of a rule-based expert system - a framework for explanation. Artificial Intelligence. 20, 215-251.

Cohen, P. R., Morgan, J. & M. E. Pollack (Eds.) (1990) Intentions in Communication Cambridge MA: MIT Press.

Collins, A. M. & Quillian, M. R. (1969) Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior. 8, 240-247.
Constantino-Gonzalez, M. & Suthers, D. D. (2000) A coached collaborative learning environment for entity-relationship modeling. In G. Gauthier, C. Frasson and K. VanLehn (Eds.) Intelligent Tutoring Systems: 5th International Conference/ITS2000. Berlin: Springer-Verlag. 324-333.

Cycorp (2001) The Cyc Knowledge Server. www.cyc.com/products2.html. Accessed April, 2001.

David, J-M, Krivine, J-P & Simmons, R. (1993) Second Generation Expert Systems. Berlin: Springer Verlag.

David, J-M., Krivine, J-P. & Ricard, B. (1993) Building and maintaining a large knowledge-based system from a ‘knowledge level’ perspective: the DIVA experiment. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 376-401.

Davis, R. (1979) Interactive transfer of expertise: acquisition of new inference rules. Artificial Intelligence. 12, 121-157.

Dijkstra, J. J., Liebrand, W. B. G. & Timminga, E. (1998) The persuasiveness of expert systems. Behaviour and Information Technology, 17(3), 155-163.

Domingue, J. (1988) TRI: The transparent rule interpreter. Research and Development in Expert Systems V. Cambridge: Cambridge Univ. Press, 126-138.

Druzdzel, M. J. (1994) Some properties of joint probability distributions. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence. (UAI-94) Seattle, WA July 29-31, 1994. 187-194.

Eliot, C & Woolf, B. P. (1996) Iterative development and validation of a simulation-based medical tutor. In Claude Frasson, Gilles Gauthier and Alan Lesgold (Eds.) Intelligent Tutoring Systems: ITS'96. Berlin: Springer Verlag, 540-549.
Ellis, C. (1989) Explanation in expert systems. In C. Ellis (Ed.) Expert Knowledge and Explanation: the Knowledge Language Interface. New York: Halsted Press, 108-126.

Elmasri, R. & Navathe, S. B. (1994) Fundamentals of Database Systems. 2nd Edition, Redwood City, CA: Benjamin/Cummings Pub.

Eshelman, L. (1988) MOLE: A knowledge-acquisition tool for cover-and-differentiate systems. In S. Marcus (Ed.) Automating Knowledge Acquisition for Expert Systems. Boston: Kluwer Academic Publishers, 37-80.

Farquhar, A. Fikes, R. & Rice, J. (1997) The Ontolingua Server: a tool for collaborative ontology construction. International Journal of Human-Computer Interaction. 46, 707-727.

Feiner, S. K. & McKeown, K. R. (1990) Coordinating text and graphic in explanation generation. In Proceedings Eighth National Conference on Artificial Intelligence: AAAI-90. Menlo Park, CA: AAAI Press/MIT Press, 442-449.

Feiner, S. K. & McKeown, K. R. (1998) Automating the generation of coordinated multimedia explanations. In Mark T. Maybury and Wolfgang Wahlster (Eds.) Readings in Intelligent User Interfaces. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 89-98.
Forbus, K. D. Everett, J. O., Ureel, L., Brokowski, M., Baher,J. & Kuehne, S. E. (1998) Distributed coaching for an intelligent learning environment. In Zhao, F and Yip, K. (Eds.) Proceedings of QR’98. Cape Cod, MA, May, 1998 Menlo Park, CA: AAAI Press, 57-64.

Forbus, K. D. and Whalley, P. B. (1994) Using qualitative physics to build articulate software for thermodynamics education. In Proceedings of AAAI-94, Seattle, WA, August, 1994. Menlo Park, CA: AAAI Press, 1175-1182.

Franklin, M. J. (2001) The entity relationship model: lecture 8. http://www.cs.berkeley.edu/~franklin/CS186F00/lectures/lecture8.pdf.
Freedman, R., Rosé, C. P., Ringenberg, M. A. & VanLehn, K. (2000) ITS tools for natural language dialogue: A domain independent parser and planner. In G. Gauthier, C. Frasson & K. VanLehn (Eds.) Intelligent Tutoring Systems: 5th International Conference. Montréal, Canada, June 19-23, 2000. Berlin: Springer. 433-442.

Gordon, A. & Hall, L. (1998) Collaboration with agents in a virtual world. Accessed April at http://puma.cg.unn.ac.uk/cmlh1/cadence/papers/4expert.htm.

Gott, S. P. & Lesgold, A. M. (2000). Competence in the Workplace: How Cognitive Performance Models and Situated Instruction Can Accelerate Skill Acquisition. In R. Glaser (Ed.), Advances in Instructional Psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.

Gregor, S. (2001) Explanations from knowledge-based systems and cooperative problem solving: an empirical study. International Journal of Human-Computer Studies. 54, 81-105.

Gregor, S. and Benbasat, G. S. (1999) Explanations from intelligent systems: theoretical foundations and implications for practice. MIS Quarterly. 23(4), 497-530.

Grice, H. P. (1975) Logic and conversation. In P. Cole & J. L. Morgan (Eds.) Syntax and Semantics : Volume 3, Speech Acts. New York: Academic Press, 41-58.

Hall, L. & Gordon, A. (1998) A virtual learning environment for entity relationship modelling. In D. Joyce (Ed.) Special Interest Group on Computer Science Education Technical Symposium; 29th -- 1998 Feb : Atlanta; GA. ACM, 345-349. Also accessed March, 2001 at http://puma.cg.unn.ac.uk/~cmlh1/cadence/papers/sigcse.htm.

Hawryszkiewycz, I. T. (1984) Database Analysis and Design. Chicago: Science Research Associates.
Hendler, J. & Lewis (1988) Designing interfaces for expert systems. In J. A. Hendler (Ed.) Expert Systems: The User Interface. Norwood, NJ: Ablex Publishing. 1-14.

Hobbs, J. R. (1995) Sketch of an ontology underlying the way we talk about the world. International Journal of Human-Computer Interaction. 43, 819-830.

Hollnagel, E. (1990) Responsibility issues in intelligent decision support systems. In D. Berry and A Hart (Eds.) Expert Systems: Human Issues, 237-249.

Johnson, W. L. (1994) Agents that learn to explain themselves. Proceedings of the Twelfth National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1257-1263.

Johnson, W. L., Rickel, J. W. & Lester, J. C. (2000) Animated pedagogical agents: face-to-face interaction in interactive learning environments. International Journal of Artificial Intelligence in Education. 11, 47-78.

Josephson, J. R., Chandrasekaran, B., Smith, J. W. & Tanner, M. C. (1987) A mechanism for forming composite explanatory hypotheses. IEEE Transaction of Systems, Man, and Cybernetics. 17(3), 445-454.

Kahn, G. (1988) MORE: From observing knowledge engineers to automating knowledge acquisition. In S. Marcus (Ed.) Automating Knowledge Acquisition for Expert Systems. Boston: Kluwer Academic Publishers, 7-36.

Kidd A. L (1985) What do users ask? - Some thoughts on diagnostics advice. In M. Merry. (Ed.) Expert Systems ’85: Proceedings of the Fifth Technical Conference of the British Computer Society Specialist Group on Expert Systems. Cambridge: Cambridge University Press, 9-20.

Kidd, A. L. & Sharpe, W. P. (1987) Goals for expert system research: an analysis of tasks and domains. In D. S. Moralee (Ed.) Research and development in expert systems IV: proceedings of Expert Systems '87, the seventh annual Technical Conference of the British Computer Society Specialist Group on Expert Systems, Brighton, 14-17 December 1987. Cambridge: Cambridge University Press, 120-129.
Lenat, D. B. & Guha, R. V. (1990) Building Large Knowledge-Based Systems: Representation and Inference in the CYC Project. Reading, Mass: Addison-Wesley.

Lester, J. C. & Porter, B. W. (1997) Developing and empirically evaluating robust explanation generators: the KNIGHT experiments. Computational Linguistics. 23(1), 65-101.

Lester, J. C., Stone, B. A., and Stelling, G. D. (1999) Lifelike pedagogical agents for mixed-initiative problem solving in constructivist learning environments. User Modeling and User-Adapted Interaction. 9, 1-44.

Lesgold, A. & Nahemow, M. (2001) Tools to assist learning by doing: Achieving and assessing efficient technology for learning. In D. Klahr and S. Carver (Eds.) Cognition and Instruction: Twenty-five years of progress. Mahwah, NJ: Lawrence Erlbaum Associates.

Luger, G. F. & Stubblefield, W.A. (1998) Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 3rd. Edition Reading, MS: Addision Wesley Longman, Inc. 171-172.

Marcus, S. (1988) SALT: A knowledge-acquisition tool for propose-and-revise systems. In S. Marcus (Ed.) Automating Knowledge Acquisition for Expert Systems. Boston: Kluwer Academic Publishers, 81-124.

Marcus, S. & McDermott, J. (1989) SALT: A knowledge acquisition language for propose-and-revise systems. Artificial Intelligence. 39, 1-37.

Martin, B. & Mitrovic, A. (2000) Tailoring feedback by correcting student answers. In G. Gauthier, C. Frasson & K. VanLehn (Eds.) Intelligent Tutoring Systems: 5th International Conference. Montréal, Canada, June 19-23, 2000. Berlin: Springer, 381-392.

Martincic, C. J. (1996) Explaining Rule Match Failures in Rule-Based Expert Systems. Masters Thesis, Department of Information Science and Telecommunications, School of Information Sciences, University of Pittsburgh, Pittsburgh, PA.

Martincic, C. J. & Metzler, D. P. (1995) Explanation and human computer interaction. In Proc. Fifth International Symposium on Systems Research, Informatics and Cybernetics. Baden-Baden, Germany, August, 1995. 116-120.

Martincic, C. J. & Metzler, D. P. (1999) A framework for authoring tools for explanation mechanisms in ITS. In S. P. Lajoie and M. Vivet (Eds.) Artificial Intelligence in Education: Open Learning Environments. Amsterdam: IOS Press, 738-740.

Maybury, M. T. (1992) Communicative acts for explanation generation. International Journal of Man-Machine Studies, 37(2), 135-172.

Maybury, M. T. (1995) Using similarity metrics to determine content for explanation generation. Expert Systems With Applications. 8(4), 513-525.

Maybury, M. T. (1998) Planning multimedia explanations using communicative acts. In Mark T. Maybury and Wolfgang Wahlster (Eds.) Readings in Intelligent User Interfaces. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 99-109.
McKeown K. R. (1988) Generating goal-oriented explanations. International Journal of Expert Systems, 1(4), 377-395.

Metzler, D. P. (1995) Project given to INFSCI 1012, LISP and Symbolic Programming.

Metzler, D. P. (1999) Project given to INFSCI 2450, Artificial Intelligence Programming Tools.

Metzler, D. P & Martincic, C. J. (1995) Explanation and human computer interaction. In Proc. Fifth International Symposium on Systems Research, Informatics and Cybernetics. Baden-Baden, Germany, August, 1995. 25-30.

Metzler, D. P. & Martincic, C. J. (1998a) QUE: Explanation through exploration. Expert Systems with Applications. 15, 253-263.

Metzler, D. P. & Martincic, C. J. (1998b) Explanatory mechanisms for intelligent tutoring systems. In Barry P. Goettl, Henry M. Halff, Carol L. Redfield & Valerie J. Shute (Eds.) Intelligent Tutoring Systems: 4th International Conference: ITS'98. Berlin: Springer Verlag, 136-145.

Michalski, R. S. (1983) A theory and methodology of inductive learning. Artificial Intelligence. 20, 111-161.

Mizoguchi, R. & Bourdeau, J. (2000) Using ontological engineering to overcome common AI-ED problems. International Journal of Artificial Intelligence in Education, 11, 107-121.

Moore, J. D. (1995) Participating in Explanatory Dialogues: Interpreting and Responding to Questions in Context. Cambridge, Mass: MIT Press.

Morgan, T. (1992) Competence and responsibility in intelligent systems. Artificial Intelligence Review, 6, 216-226.

Müller, B. S. & Sprenger, M. (1996) Explanation abilities. In Peter Hoschka (Ed.) Computers as Assistants: A New Generation of Support Systems. Hillsdale, NJ: Lawrence Erlbaum Associates, 68-80.

Murray, T. (1999) Authoring intelligent tutoring systems: an analysis of the state of the art. International Journal of Artificial Intelligence in Education, 10, 98-129.

Musen, M. (1987) Use of a domain model to drive an interactive knowledge editing tool. International Journal of Man-Machine Studies, 26, 105-121.

Neiman, D. E. & Woolf, B. P. (1997) A script-based knowledge representation for a tutor in molecular genetics. In B. Du Boulay and R. Mizoguchi (Eds.) Artificial Intelligence in Education: Knowledge and Media in Learning Systems. Amsterdam: IOS Press, 279-286.

Newell, A. (1990) Unified Theories of Cognition. Cambridge, MA: Harvard University Press.

Nikolopoulos, C. (1997) Expert Systems: Introduction to First and Second Generation and Hybrid Knowledge Based Systems. New York: Marcel Dekker, Inc. 245-262.

Nilsson, N.J. (1998) Artificial Intelligence: A New Synthesis. San Francisco, CA: Morgan Kaufmann Publishers, Inc. 283.
Norman, D. (1993) Things that Make Us Smart: Defending Human Attributes in the Age of the Machine. Reading, Mass: Addison-Wesley Publishing Company.

O’Leary, D. E. (1997) Impediments to sharing ontologies. International Journal of Human-Computer Studies. 46(2/3), 327-337.
Paolucci, M., Suthers, D. & Weiner, A. (1996) Automated advice-giving strategies for scientific inquiry. In Claude Frasson, Gilles Gauthier and Alan Lesgold (Eds.) Intelligent Tutoring Systems: ITS'96. Berlin: Springer Verlag, 372-381.
Patel-Schneider, P. (1999) The Classic Family of Knowledge Representation Systems. Accessed August, 1999 at http://www.bell-labs.com/projects/classic/.

Person, J. K., Graesser, A. C., Kreuz, R. J. & Pomeroy, V. (2001) Simulating human tutor dialog moves in AutoTutor. International Journal of Artificial Intelligence in Education. 12.

Porayska-Pomsta, K., Mellish, C. & Pain, H. (2000) Aspects of speech act categorization: towards generating teachers’ language. International Journal of Artificial Intelligence in Education, 11, 254-272.

Rademakers, P. & Vanwelkenhuysen, J. (1993) Generic models and their support in modeling problem solving behavior. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 350-375.

Richards, D. (2000) The reuse of knowledge: a user-centred approach. International J. Human Computer Studies. 52, 553-579.

Richer, M. H. & Clancey, W. J. (1985) GUIDON-WATCH: A graphic interface for viewing a knowledge-based system. IEEE Computer Graphics and Applications. 5(11), 51-64.

Rosch, E. (1973) Natural categories. Cognitive Psychology, 4, 328-350.

Sacerdoti, E. D. (1974) Planning in a hierarchy of abstraction spaces. Artificial Intelligence. 5, 115-135. As related in Paul R. Cohen and Edward A. Feigenbaum (Eds.) (1982) The Handbook of Artificial Intelligence. Vol. 3 Los Altos, CA: William Kaufmann, Inc. 523-530.

Salmon, W. C. (1990) Four Decades of Scientific Explanation. Minneapolis: Univ. of Minneapolis Press.

Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H. & Van de Velde, W. (1994) CommonKADS: A comprehensive methodology for KBS development. IEEE Expert, 9(6), 28-37.
Searle, J. R. (1969) Speech Acts. Cambridge, UK: Cambridge Univ. Press.

Shute, V. J. (1990) A large-scale evaluation of an intelligent discovery world: Smithtown. Interactive Learning Environments. 1, 51-77.
Smith, B. (1995) Formal ontology, common sense and cognitive science. International Journal of Human-Computer Interaction. 43, 641-667.

Sowa, R. F. (1995) Top-level ontological categories. International Journal of Human-Computer Interaction. 43, 669-685.

Steels, L. (1990) Components of expertise. AI Magazine, 11(2), 28-49.

Steels, L. (1993) The componential framework and its role in reusability. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 273-298.

Stelzner, M. & Williams, M. D. (1988) The evolution of interface requirements for expert systems. In J. A. Hendler (Ed.) Expert Systems: The User Interface. Norwood, NJ: Ablex Publishing. 285-306.

Stevens, A., Roberts, B. & Stead, L. (1983) The use of a sophisticated graphics interface in computer-assisted instruction. IEEE Computer Graphics and Applications. 3, 25-31.

Suh, C-K. & Suh, E-H. (1993) Using human factor guidelines for developing expert systems. Expert Systems, 10(3), 151-156.

Swartout, W. R. (1983). XPLAIN: a system for creating and explaining expert consulting programs. Artificial Intelligence. 21, 285-325.

Swartout, W. R. & Moore, J. D. (1993) Explanation in second generation expert systems. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 545-585.

Sypniewski, B. P. (1994) The importance of being data. AI Expert, 9(11), 23-31.

Tanner, M. C. & Keuneke, A. M. (1991) The roles of the task structure and domain functional models. IEEE Expert, 6(3), 50-57.

Tanner, M. C., Keuneke, A. M. & Chandrasekaran, B. (1993) Explanation using task structure and domain functional models. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 586-613.

Teory, T. J. (1994) Database Modelling & Design: The Fundamental Principles. 2nd Edition. San Francisco: Morgan Kaufmann. 13-70.

Terpstra, P., van Heijst, G., Shadbolt, N. & Wielinga, B. (1993) KA process support through generalised directive models. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 428-455.

Toth, J. A., Suthers, D. & Weiner, A. (1997) Providing expert advice in the domain of collaborative scientific inquiry. In B. du Boulay & R. Mizoguchi (Eds.) Artificial Intelligence in Education: Knowledge and Media in Learning Systems. Amsterdam: IOS Press, 302-308.

Tufte, E. R., (1997) Visual Explanations. Cheshire, CT: Graphics Press.

Tversky, A. (1977) Features of similarity. Psychological Review, 84, 327-352.

Valley, K. (1992) Explanation in expert system shells: a tool for exploration and learning. In C. Frasson, G. Gauthier & G. McCalla (Eds.) Intelligent Tutoring Systems: ITS'92. Springer-Verlag: Berlin, 601-614.
Van Labeke, N., Aiken, R., Morinet-Lambert, J. & Grandbastien, M. (1999) IF “what is the core of AI & education?” is the question, THEN “teaching knowledge” is the answer. In S. P. Lajoie and M. Vivet (Eds.) Artificial Intelligence in Education: Open Learning Environments: New Computational Technologies to Support Learning, Exploration and Collaboration. Amsterdam: IOS Press, 241-250.

Waterman, D. A. & Hayes-Roth, F. (1983) An investigation of tools for building expert systems. In F. Hayes-Roth, D. A. Waterman and D.B. Lenat (Eds.) Building Expert Systems. Reading, MA: Addison-Wesley, 169-215.

Weiner, J. L. (1980) BLAH, a system which explains its reasoning. Artificial Intelligence. 15, 19-48.

Wickler, G., Chappel, H. & Lambert, S. (1993) An architecture for a generic explanation component. In M R Wick (Eds) Proceedings of IJCAI Workshop on Explanation and Problem Solving, 1993. Chambery, 53-64 .

Wielinga, B.J., Schreiber, A.T. & Breuker, J.A. (1992) KADS: a modelling approach to knowledge engineering. Knowledge-Acquisition. 4(1), 5-53.

Wielinga, B., Van de Velde, W., Schreiber, G.& Akkermans, H. (1993) Towards a unification of knowledge modelling approaches. In Jean-Marc David, Jean-Paul Krivine and Reid Simmons (Eds.) Second Generation Expert Systems. Berlin: Springer Verlag, 299-335.

Woods, D. D., Roth, E. M. & Bennett, K. B. (1990) Explorations in joint human-machine cognitive systems. In S. P. Roberson, W. Zachary and J. B. Black (Eds.) Cognition, Computing and Cooperation. Norwood, NJ: Ablex Publishing Corp. 123-158.

Zaïane, O. R. (2001a) Other styles of E R diagramming. http://www.cs.sfu.ca/CC/354/ zaiane/material/notes/Chapter2/node9.html

Zaïane, O. R. (2001b) Generalization. http://www.cs.sfu.ca/CC/354/zaiane/material/ notes/Chapter2/node14.html#SECTION001100000000000000000.

Zouaq, A. Frasson, C. & Rouane, K. (2000) The explanation agent. In G. Gauthier, C. Frasson & K. VanLehn (Eds.) Intelligent Tutoring Systems: 5th International Conference. Montréal, Canada, June 19-23, 2000. Berlin: Springer. 554-563.

Appendices

Appendix A Context Mechanism Code

;;;context mechanism file

;;;Cynthia J. Martincic

;;;April, 2001

(in-package :common-graphics-user)

;;;This function re-establishes past system states.

;;;The argument is an integer representing a context or cycle number.

(defun change-to-context-number (context-num)

 (unless (= context-num (start-slot *current-context*))

 (dolist (obj *OB*)

 (setf (status obj) 'out))

 (let ((current (find-context-by-number context-num)))

 (if current

 (progn

 (setf *current-context* current)

 (dolist (obj *OB*)

 (if (object-exists-in-contextp obj context-num)

 (progn

 (setf (status obj) 'in)))))

)

)

)

)

;;;This function checks to see if an object existed in a context.

;;;The arguments are an RBR-object (see er-objects.cl) and an

;;;integer representing a context or cycle.

;;;It is called by change-to-context-number.

(defun object-exists-in-contextp (obj context-no)

 (let ((contxt (find-context-by-number context-no))

 (obj-start-contxt (find-context-by-number (start-slot obj)))

 (obj-end-contxts (mapcar #'find-context-by-number (end-slot obj))))

 (and (context-ancestorp obj-start-contxt contxt)

 (not (member t

 (mapcar #'(lambda (x)

 (context-ancestorp x contxt))

 obj-end-contxts)))))

)

;;;This function determines if contxt1 is an ancestor of contxt2.

;;;The arguments must be of type context (see er-objects.cl)

;;;It is called by object-exists-in-contextp.

(defun context-ancestorp (contxt1 contxt2)

 (cond ((null contxt1) ())

 ((= (start-slot contxt1) 0) t)

 ((null (parent contxt2)) ())

 ((equal contxt1 contxt2) t)

 (t (context-ancestorp contxt1 (parent contxt2)))

)

)

;;;This function goes through the *context-list* which is a global variable

;;;and returns the context that has that cycle number on its start slot.

;;;The argument is an integer representing a context or cycle.

(defun find-context-by-number (number)

 (dolist (contxt *context-list*)

 (if (= (start-slot contxt) number)

 (return contxt)))

)

Appendix B Constraint Relaxation Code

;;;Cynthia Martincic

;;;filename relax.cl

;;;April, 2001

(in-package :common-graphics-user)

(setf *print-gensym* nil)

(defvar *relaxation-definitions* ())

(defclass relax ()

 ())

;;;The class "class-info" is defined to hold constraint relaxation

;;;information for classes of objects.

;;;Classname is the name of a class in the expert system knowledge base.

;;;Incr-level is the same as below in slot-info.

(defclass class-info (relax)

 ((classname :accessor classname :initarg :classname :initform ())

 (incr-level :accessor incr-level :initarg :incr-level :initform ())

)

)

;;;The class "slot-info" is defined to hold constraint relaxation

;;;information for the slotsof objects.

(defclass slot-info (relax)

 ((classname :accessor classname :initarg :classname :initform nil)

 (slotname :accessor slotname :initarg :slotname :initform nil)

 (slottype :accessor slottype :initarg :slottype :initform nil)

 (value-list :accessor value-list :initarg :value-list :initform nil)

 (incr-level :accessor incr-level :initarg :incr-level :initform nil)

 (incr-type :accessor incr-type :initarg :incr-type :initform nil)

 (incr-value :accessor incr-value :initarg :incr-value :initform nil)

 (direction :accessor direction :initarg :direction :initform nil)

)

)

(setf *quantity-values* '(0-1 1 many))

(setf *relaxation-definitions*

 (list

 (list 'noun

 (make-instance 'slot-info

 :slotname 'label

 :classname 'noun

 :slottype 'symbol

 :incr-level 'none

)

 (make-instance 'slot-info

 :slotname 'descriptor

 :classname 'noun

 :slottype 'symbol

 :incr-level 'any

)

 (make-instance 'slot-info

 :slotname 'quantity

 :classname 'noun

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

);end noun list

 (list 'entity

 (make-instance 'slot-info

 :slotname 'label

 :classname 'entity

 :slottype 'symbol

 :incr-level 'none

)

 (make-instance 'slot-info

 :slotname 'attributes

 :classname 'entity

 :slottype 'list

 :incr-level 'any

)

);end entity list

 (list 'verb

 (make-instance 'slot-info

 :slotname 'label

 :classname 'verb

 :slottype 'symbol

 :incr-level 'none

)

 (make-instance 'slot-info

 :slotname 'subject

 :classname 'verb

 :slottype 'symbol

)

 (make-instance 'slot-info

 :slotname 'subj-quantity

 :classname 'verb

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

 (make-instance 'slot-info

 :slotname 'object

 :classname 'verb

 :slottype 'symbol

)

 (make-instance 'slot-info

 :slotname 'obj-quantity

 :classname 'verb

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

);end verb list

 (list 'prepositional-modifier

 (make-instance 'slot-info

 :slotname 'label

 :classname 'prepositional-modifier

 :slottype 'symbol

)

 (make-instance 'slot-info

 :slotname 'modifies

 :classname 'prepositional-modifier

 :slottype 'symbol

)

 (make-instance 'slot-info

 :slotname 'quantity

 :classname 'prepositional-modifier

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

 (make-instance 'slot-info

 :slotname 'preposition

 :classname 'prepositional-modifier

 :slottype 'symbol

)

);end prepositional-modifier list

 (list 'binary-relation

 (make-instance 'slot-info

 :slotname 'label

 :classname 'binary-relation

 :slottype 'symbol

 :incr-level '1

)

 (make-instance 'slot-info

 :slotname 'entity1

 :classname 'binary-relation

 :slottype 'entity

)

 (make-instance 'slot-info

 :slotname 'quantity1

 :classname 'binary-relation

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

 (make-instance 'slot-info

 :slotname 'entity2

 :classname 'binary-relation

 :slottype 'entity

)

 (make-instance 'slot-info

 :slotname 'quantity2

 :classname 'binary-relation

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

);end binary-relation list

 (list 'ternary-relation

 (make-instance 'slot-info

 :slotname 'label

 :classname 'ternary-relation

 :slottype 'symbol

)

 (make-instance 'slot-info

 :slotname 'entity1

 :classname 'ternary-relation

 :slottype 'entity

)

 (make-instance 'slot-info

 :slotname 'quantity1

 :classname 'ternary-relation

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

 (make-instance 'slot-info

 :slotname 'entity2

 :classname 'ternary-relation

 :slottype 'entity

)

 (make-instance 'slot-info

 :slotname 'quantity2

 :classname 'ternary-relation

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

 (make-instance 'slot-info

 :slotname 'entity3

 :classname 'ternary-relation

 :slottype 'entity

)

 (make-instance 'slot-info

 :slotname 'quantity3

 :classname 'ternary-relation

 :slottype 'one-of-ordered-list

 :value-list *quantity-values*

 :incr-level '1

)

);end ternary-relation list

 (list 'classes

 (make-instance 'class-info

 :classname 'noun

 :incr-level 2)

 (make-instance 'class-info

 :classname 'entity

 :incr-level 2)

 (make-instance 'class-info

 :classname 'attribute

 :incr-level 2)

 (make-instance 'class-info

 :classname 'verb

 :incr-level 1)

 (make-instance 'class-info

 :classname 'modifier

 :incr-level 1)

 (make-instance 'class-info

 :classname 'prepositional-modifier

 :incr-level 2)

 (make-instance 'class-info

 :classname 'relation

 :incr-level 1)

 (make-instance 'class-info

 :classname 'binary-relation

 :incr-level 2)

 (make-instance 'class-info

 :classname 'ternary-relation

 :incr-level 2)

 (make-instance 'class-info

 :classname 'isa-relation

 :incr-level 2)

 (make-instance 'class-info

 :classname 'recursive

 :incr-level 2)

);end classlist

 (list 'num-test

 (make-instance 'slot-info

 :slotname 'slot1

 :classname 'num-test

 :slottype 'number

 :incr-level '1

 :incr-type 'direct

 :incr-value 0.1

)

 (make-instance 'slot-info

 :slotname 'slot2

 :classname 'num-test

 :slottype 'number

 :incr-level '2

 :incr-type 'percentage

 :incr-value 0.05

)

 (make-instance 'slot-info

 :slotname 'slot3

 :classname 'num-test

 :slottype 'number

 :incr-level '1

 :incr-type 'std-dev

 :incr-value 1

)

);end num-test list

);end list

);end setf

(defun get-slots-in-clause (clause)

 (let* ((classname (first clause))

 (slots (get-slot-names classname)))

 (mapcar #'first (remove-if #'null

 (mapcar #'(lambda (x) (member x clause))

 slots)))

)

)

(defun sorted-slot-info (slots-in-clause slot-info)

 (let ((slot-info-needed (remove-if #'null

 (find-slot-info slots-in-clause slot-info)))

)

 (sort-slot-info slot-info-needed))

)

;;;slots-in-clause is a list of the slots that appear in an

;;;object clause of a rule antecedent.

;;;returns a list of the slot-info for each slot.

(defun find-slot-info (slots-in-clause slot-info)

 (cond ((null slots-in-clause) ())

 (t (cons (find-slot-info-2 (car slots-in-clause) slot-info)

 (find-slot-info (cdr slots-in-clause) slot-info)))

)

)

;;;called by find-slot-info

;;;finds the slot constraint relaxation information

;;;for slot in the slot-info list for a class.

;;;if there was not slot-info for a clause,

;;;returns a new instance of slot-info with type 'unknown.

(defun find-slot-info-2 (slot slot-info)

 (dolist (s slot-info (make-instance 'slot-info

 :slotname slot

 :incr-level 'unknown

 :slottype 'unknown))

 (if (equal slot (slotname s))

 (return s)))

)

;;;called by relax-query

;;;return t or nil if there are objects of classname

;;;in object-list ob.

(defun instances-of-class-exist (classname ob)

 (dolist (x ob)

 (if (and (equal (type-of x) classname) (equal (status x) 'in))

 (return t))))

;;;called by relax-query

;;;clause argument is an object clause of a rule antecedent.

;;;return a new clause with the superclass replacing the original class

;;;of the clause. If slots in the clause are not included in the superclass,

;;;they are not included in the clause returned.

(defun relax-class (clause window)

 (let* (superclasses

 relaxed-matches

 (classname (first clause))

 (classdef (get-classdef classname))

 (class-relax-defs (assoc 'classes *relaxation-definitions*))

 (class-relax-info (dolist (x (rest class-relax-defs) NIL)

 (if (equal (classname x) classname)

 (return x))))

 (incr-level (if class-relax-info

 (incr-level class-relax-info)))

 (message-pane (find-component :control-editable-text

 (rule-analysis-control-form window)))

)

 (if (or (equal incr-level 1) (equal incr-level 2)

 (equal incr-level 'any))

 (progn

 (setf superclasses (get-superclasses classdef))

 (setf relaxed-matches (cons 1

 (match-new-clauses

 (build-new-superclass-clauses superclasses clause))))

);progn

);end if

 (if (and (null relaxed-matches)

 (or (equal incr-level 2) (equal incr-level 'any)))

 (progn

 (setf superclasses

 (flatten (append (get-superclasses classdef)

 (mapcar #'get-superclasses

 (mapcar #'get-classdef

 (get-superclasses classdef))))))

 (setf relaxed-matches (cons 2

 (match-new-clauses

 (build-new-superclass-clauses superclasses clause))))

);end progn

);end if

 (if (null relaxed-matches)

 (progn

 (pop-up-message-window

 (ps (format nil

 "There were no reasonable alternatives for the selection."))

 message-pane)

);end progn

;else

 (progn

 (report-relaxation-results relaxed-matches message-pane)

);end progn

);end if

);end let*

);end defun

;;;called by relax-class

;;;takes a list of superclasses of the original class

;;;and the original object clause.

(defun build-new-superclass-clauses (superclasses orig-clause)

 (let ((slots-in-clause (get-slots-in-clause orig-clause)))

 (build-new-superclass-clauses-2

 superclasses orig-clause slots-in-clause))

)

;;;called by build-new-superclass-clauses.

;;;arguments are a list of superclasses, the original clause and

;;;the slots of the original clause.

;;;returns new clauses with the class replaced by a superclass.

(defun build-new-superclass-clauses-2 (superclasses orig-clause slots-in-clause)

 (cond ((null superclasses) ())

 (t (cons (build-sc-clause (first superclasses) orig-clause slots-in-clause)

 (build-new-superclass-clauses-2

 (rest superclasses) orig-clause slots-in-clause)))

)

)

;;;called by build-new-superclass-clauses-2

;;;arguments are a class, a clause and the slots of the original clause.

;;;returns a new clause with the superclass replacing the class of the

;;;original clause.

(defun build-sc-clause (superclass orig-clause slots-in-clause)

 (let ((slots-of-superclass (get-slot-names superclass))

)

 (if (matched-slots slots-in-clause slots-of-superclass)

 (list (cons superclass (cons (gensym "?-") (cddr orig-clause))))

 (list (cons superclass (cons (gensym "?-") (clause-with-superclass-slots

 orig-clause slots-in-clause slots-of-superclass))))

);end if

);end let

)

;;;called by build-sc-clause.

;;;checks to see if the slots of the original clause

;;;are a part of the superclass.

;;;returns t or nil.

(defun matched-slots (slots-in-clause slots-of-superclass)

 (dolist (s slots-in-clause t)

 (if (not (member s slots-of-superclass))

 (return nil))))

;;;called by build-sc-clause.

;;;returns a list of slots and constraints of the original clause

;;;that are included in the

;;;slots of the superclass slots.

(defun clause-with-superclass-slots (orig-clause slots-in-clause slots-of-superclass)

 (cond ((null slots-in-clause) ())

 ((member (first slots-in-clause) slots-of-superclass)

 (append

 (let ((orig-cl

 (member (first slots-in-clause) orig-clause)))

 (list (first orig-cl) (second orig-cl)))

 (clause-with-superclass-slots orig-clause (rest slots-in-clause)

 slots-of-superclass)))

 (t (clause-with-superclass-slots

 orig-clause (rest slots-in-clause) slots-of-superclass))

)

)

;;;called by relax-level and relax-class.

;;;returns a list of matches to each clause

;;;passed in the clauses argument.

(defun match-new-clauses (clauses)

 (cond ((null clauses) ())

 (t (append

 (get-all-instantiations-of-ante

 'test-rule

 (make-test-rule (first clauses)) *OB*)

 (match-new-clauses (rest clauses)))))

)

;;;creates a new test rule with the clause

;;;passed as an argument.

(defun make-test-rule (clause)

 (let ((new-rule

 (append '(defrule test-rule) clause '(--> ()))))

 (if (listp (third new-rule))

 new-rule

 (cons 'defrule (cons clause '(--> ())))))

)

;;;creates a pop-up window that reports the constraint relaxation

;;;results.

(defun report-relaxation-results (relaxed-matches message-pane)

 (let* (report-string

 (level (first relaxed-matches))

 (matched-objects (mapcar #'cdr (mapcar #'second (rest relaxed-matches))))

 (obj-descriptions (mapcar #'make-description-of-obj-string

 matched-objects))

 (obj-descr-string (do ((od obj-descriptions (cdr od))

 (str "" (concatenate-strings str (first od))))

 ((null od) str)))

 (relax-level (if (equal level 1)

 (ps (format nil

 "~%With SLIGHT relaxation of constraints,"))

 (if (equal level 2)

 (ps (format nil

 "~%With SOME relaxation of constraints,"))

 (ps (format nil

 "~%With CONSIDERABLE relaxation of constraints,")))))

)

 (if (or (null matched-objects) (equal (first matched-objects) t))

 (setf report-string

 (ps

 (format nil

 "There were no objects that closely match the selected clause(s).")))

 (setf report-string (concatenate-strings

 relax-level

 (ps (format nil

 "the following objects match the selected clauses:"))

 obj-descr-string

 (ps (format nil "~%"))))

);end if

 (pop-up-message-window report-string message-pane)

)

)

;;;returns a string consisting of the classname, label

;;;and remaining slot-value pairs of the object passed

;;;as an argument.

(defun make-description-of-obj-string (object)

 (if (typep object 'er-object)

 (let ((classname (type-of object))

 (slot-value-pairs (get-slots-and-values object))

)

 (setf slot-value-pairs (remove (list 'label (label object))

 slot-value-pairs :test #'equal))

 (concatenate-strings

 (ps (format nil "~s ~s" classname (label object)))

 (ps (format nil "~s" slot-value-pairs)))

))

)

;;;called by relax-constraints.

;;;finds the set of constraints in a query.

;;;the constraints are either constant values

;;;or variables that are used in more than one place

;;;in the query.

(defun find-constrained-slots (query)

 (let ((instance-clauses (get-query-instance-clauses query))

)

 (if (null instance-clauses)

 ()

 (cons (find-constrained-slots-2 (first instance-clauses) query)

 (find-constrained-slots (rest query))))

)

)

;;;called by find-constrained-slots.

;;;finds the constraints for one clause.

(defun find-constrained-slots-2 (clause query)

 (let ((classname (first clause))

 (rest-query (flatten (remove clause query :test #'equal)))

)

 (cons classname

 (do* ((cl (cddr clause) (cddr cl))

 (slot (first cl) (first cl))

 (var-or-value (second cl) (second cl))

 (constrained-slots

 (if (and (not (equal slot 'status))

 (or (and (variable-p var-or-value)

 (member var-or-value rest-query))

 (and (not (variable-p var-or-value))

 (not (null slot)))))

 (cons (list slot var-or-value) ())

 ())

 (if (and (not (equal slot 'status))

 (or (and (variable-p var-or-value)

 (member var-or-value rest-query))

 (and (not (variable-p var-or-value))

 (not (null slot)))))

 (setf constrained-slots

 (cons

 (list slot var-or-value) constrained-slots))

 constrained-slots)))

 ((null cl) constrained-slots)

))

);end let

)

;;;slot-list is a list beginning with the classname

;;;followed by lists of slot-value pairs e.g,(classname (slot1 val1) (slot2 var2)))

;;;take rest to get only slot-value/slot-var pairs

;;;returns a list of the slot names in slot-list.

(defun get-slots-in-list (slot-list)

 (let ((rest-lst (rest slot-list)))

 (mapcar #'first rest-lst)))

;;;the argument is a classname followed by lists of slot-value pairs

;;;e.g,(classname (slot1 val1) (slot2 var2))).

;;;returns a list of slot-info instances.

(defun get-slot-info (slot-list)

 (let* ((classname (first slot-list))

 (slots-in-list (get-slots-in-list slot-list))

 (slot-info (rest (assoc classname *relaxation-definitions*)))

 (slot-info-needed (remove-if #'null

 (mapcar #'(lambda (x)

 (if (member (slotname x) slots-in-list)

 x))

 slot-info))))

 slot-info-needed))

;;;called by r-a-why-not (in rule-analysis.cl)

;;;the query argument is a subset of rule antecedent clauses.

(defun relax-query (query window)

 (if (and (eql (length query) 1)

 (not (null (get-query-instance-clauses query)))

 (not (instances-of-class-exist (first (first query)) *OB*)))

 (relax-class (first query) window)

;else

 (relax-constraints query window)

)

)

;;;called by relax-query.

;;;first relaxes constraints at one level. If there are matches

;;;it stops. If not, relaxes constraints at the second level.

;;;It will continue to the 'any level if no matches are found

;;;at the second level.

(defun relax-constraints (query window)

 (let* (new-matches

 (control-window (rule-analysis-control-form window))

 (message-pane (find-component :control-editable-text

 (rule-analysis-control-form window)

))

 (inst-clauses (get-query-instance-clauses query))

 (classnames (mapcar #'first inst-clauses))

 (slot-info-list (mapcar #'(lambda (clsname)

 (assoc clsname *relaxation-definitions*))

 classnames))

 (constrained-slots-in-clause-list (find-constrained-slots query))

)

 (setf new-matches

 (relax-level 'level1 query slot-info-list

 constrained-slots-in-clause-list))

 (if (or (null new-matches) (equal (first (second (first new-matches))) t))

 (setf new-matches

 (relax-level 'level2 query slot-info-list

 constrained-slots-in-clause-list))

 (setf new-matches (cons 1 new-matches)))

 (if (not (equal (first new-matches) 1))

 (if (or (null new-matches) (equal (first (second (first new-matches))) t))

 (setf new-matches (cons 'any

 (relax-level 'any query slot-info-list

 constrained-slots-in-clause-list)))

 (setf new-matches (cons 2 new-matches))))

 (report-relaxation-results new-matches message-pane)

)

)

;;;called by relax-constraints.

;;;the first relaxation looks at each slot individually - these would

;;;be the minimum relaxations.

;;;if no matches can be made individually, a combination of all is tried.

(defun relax-level (level query slot-info constrained-slots)

 (let ((new-matches (match-new-clauses (individual-relaxation-matches-v2

 level query slot-info constrained-slots)))

)

 (if (null new-matches)

 (setf new-matches (match-new-clauses

 (combined-relaxation-matches

 level query slot-info constrained-slots)))

);end if

 new-matches

);end let

);end defun

;;;called by relax-level.

;;;this function will relax all constrained slots at this level.

(defun combined-relaxation-matches (level query slot-info constrained-slots)

 (let* ((constr-slots (eliminate-duplicate-vars constrained-slots))

 (inst-clauses (get-query-instance-clauses query))

 relaxed-matches

)

 (do ((inst-cls inst-clauses (rest inst-cls))

 (const-slots constrained-slots (rest const-slots))

 (slt-info slot-info (rest slt-info))

 (q query (c-r-m-2 (first slt-info) level (first inst-cls)

 q (first const-slots)))

)

 ((null inst-cls) q)

)

)

)

;;;called by combined-relaxation matches.

(defun c-r-m-2 (slot-info level clause query constr-slots)

 (let ((pos (position clause query :test #'equal)))

 (if (null pos)

 query

;else

 (do ((slt-info (rest slot-info) (cdr slt-info))

 (q query (setf q

 (relax-slot level

 (first (nthcdr pos q)) q

 (first slt-info) constr-slots)))

)

 ((null slt-info) q)

)

);end if

);end let

)

;;;eliminates duplicate relaxation actions by

;;;considering only one instance of a variable that

;;;appears more than once in a query.

(defun eliminate-duplicate-vars (constr-slots)

 (cond ((null constr-slots) ())

 (t (cons (check-first (first constr-slots) (rest constr-slots))

 (eliminate-duplicate-vars (rest constr-slots))))

)

)

;;;called by eliminate-duplicate-vars.

(defun check-first (first-set rest-set)

 (let ((classname (first first-set))

)

 (setf first-set (rest first-set))

 (cons classname

 (do ((pairs first-set (cdr pairs))

 (new-set ()

 (if (or (not (variable-p (second (first pairs))))

 (and (variable-p (second (first pairs)))

 (not (member (second (first pairs)) (flatten rest-set)))))

 (setf new-set (cons (first pairs) new-set))

 new-set)))

 ((null pairs) new-set))

)

)

)

;;;called by relax-level.

;;;returns a set of clauses that have only one relaxation

;;;performed on them.

(defun individual-relaxation-matches-v2 (level query slot-info constrained-slots)

 (let (relaxed-matches

 (inst-clauses (get-query-instance-clauses query))

)

 (do ((inst-cls inst-clauses (rest inst-cls))

 (const-slots constrained-slots (rest const-slots))

 (slt-info slot-info (rest slt-info))

)

 ((null inst-cls) relaxed-matches)

 (setf relaxed-matches

 (append relaxed-matches

 (i-r-m-2 (first slt-info) level (first inst-cls)

 query (first const-slots))))

);end do*

);end let

)

;;;called by individual-relaxation-matches.

;;;slot-info is a list with the classname of the clause, followed by

;;;slot-info objects for the slots of the class (e.g. (noun <slot-info> <slot-info>)))

;;;level is leve1, level2 or any.

;;;const-slots-for-clause is a list of the classname followed by slot-value

;;;pairs that represent constraints in the clause (e.g., (noun (label car)

;;;(descriptor price)))

(defun i-r-m-2 (slot-info level inst-cls query const-slots-for-clause)

 (let (rm)

 (dolist (slot (rest slot-info) rm)

 (setf rm (cons

 (relax-slot level inst-cls query slot

 const-slots-for-clause)

 rm))

);end dolist

);end let

)

;;;called by i-r-m-2 and c-r-m-2.

;;;the following function constructs new relaxed queries for single slots

;;;when the slot value is constrained to a particular value

;;;or by the use of a variable that becomes bound to that slot value and

;;;is used in another clause in the query.

(defun relax-slot (level clause query slot-info constrained-slots)

 (let ((s-type (determine-type-of-slot slot-info))

)

 (if (not (is-constrained slot-info constrained-slots))

 (setf s-type 'skip))

 (cond ((equal s-type 'number)

 (relax-num-slot level clause query slot-info constrained-slots))

 ((equal s-type 'list)

 (relax-list-slot level clause query slot-info constrained-slots))

 ((equal s-type 'class)

 (relax-class-slot level clause query slot-info constrained-slots))

 ((equal s-type 'one-of-list)

 (relax-one-of-a-list-slot level clause query slot-info constrained-slots))

 ((equal s-type 'one-of-ordered-list)

 (relax-one-of-ordered-list-slot level clause query slot-info constrained-slots))

 ((equal s-type 'symbol)

 (relax-symbol-slot level clause query slot-info constrained-slots))

 ((equal s-type 'unknown)

 (relax-unknown-slot level clause query slot-info constrained-slots))

 (t query))

)

)

;;;called by relax-slot.

(defun determine-type-of-slot (slot-info)

 (let ((slot-type (slottype slot-info)))

 (if (equal slot-type 'unknown)

 (determine-type-of-slot-from-kb slot-info)

 slot-type)))

;;;called by determaine-type-of-slot when

;;;the slot-type has not been defined.

(defun determine-type-of-slot-from-kb (slot-info)

 ;find all classes with this slot

 ;find all instances of these classes

 ;find all slots whose value is not nil

 ;determine type, if possible

 ;if slot-values are numeric

 ;if slot-values are symbols- look for class info

 (let* ((class (classname slot-info))

 (slot (slotname slot-info))

 (instances (mapcar #'(lambda (obj)

 (if (typep obj class)

 obj)) *OB*))

 (slot-values (mapcar (funcall slot) instances))

 (type (type-of (first slot-values)))

)

 (cond ((equal type 'number) 'number)

 ((and (equal type 'symbol) (is-class (first slot-values)))

 'class)

 ((equal type 'symbol) 'symbol)

 (t slot-info))

)

)

;;;called by relax-slot.

(defun relax-num-slot (level clause query slot-info constrained-slots)

 (if (compare-level level slot-info)

 ;find slot in clause

 (let* ((slotname (slotname slot-info))

 (classname (classname slot-info))

 (slot-val-pair

 (get-slot-value-pair classname slotname constrained-slots))

 (var-or-val (second slot-val-pair))

 (new-query

 (if (variable-p var-or-val)

 (relax-num-var level var-or-val slot-info clause query)

 (relax-num-val level var-or-val slot-info clause query))

)

)

 new-query

);end let*

);end if

);end defun

;;;called by slot relaxation functions of all types.

(defun get-slot-value-pair (classname slotname constrained-slots)

 (assoc slotname (rest constrained-slots))

)

;;;called by relax-num-slot.

(defun relax-num-var (level var slot-info clause query)

 (let* ((rest-query (remove clause query :test #'equal))

 (second-clause

 (find-second-clause var (remove clause query :test #'equal)))

 (incr-value (find-increment-value slot-info level var))

)

 (if (equal (first second-clause) 'test)

 (let* ((first-test (substitute

 `(- ,incr-value ,var) var

 (second second-clause)))

 (second-test (substitute

 `(+ ,incr-value ,var) var

 (second second-clause)))

 (new-test-clause (list 'test

 (list 'or first-test second-test)))

)

 (substitute new-test-clause second-clause query

 :test #'equal)

);end let*

;else

 (let* ((new-var (gensym "?-"))

 (new-rest-query

 (substitute-new-var new-var var rest-query))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (and (>= ,new-var (- ,var ,incr-value))

 (<= ,new-var (+ ,var ,incr-value)))))

)

)

 (append

 (substitute-new-clauses new-rest-query rest-query query)

 (list new-test-clause))

);end let*

);end if

);end let*

);end defun

;;;called by relax-num-var and relax-num-val.

(defun find-increment-value (slot-info level var)

 (let* ((incr-type (incr-type slot-info))

 (incr-value (incr-value slot-info))

 (lvl (case level

 ('level1 1)

 ('level2 2)

 (t 0))))

 (cond ((equal incr-type 'direct) `(* ,incr-value ,lvl))

 ((equal incr-type 'percentage)

 `(* ,var (* ,lvl ,incr-value)))

 ((equal incr-type 'std-dev)

 `(* ,var (* ,lvl ,incr-value)))

);end cond

);end let*

);end defun

;;;called by relax-num-slot.

(defun relax-num-val (level val slot-info clause query)

 (let* ((incr-value (find-increment-value slot-info level val))

 (new-var (gensym "?-"))

 (new-clause (substitute new-var val clause))

 (new-test-clause

 `(test (and (>= ,new-var (- ,incr-value ,val))

 (<= ,new-var (+ ,incr-value ,val)))))

)

 (if (equal level 'any)

 (substitute new-clause clause query)

;else

 (append

 (substitute new-clause clause query :test #'equal)

 (list new-test-clause))

);end let*

);end let*

)

;;;finds standard deviation of values obtained from KB.

(defun find-std-dev (lst n avg)

 (if (zerop avg)

 0

 (let ((sum (do ((l lst (cdr l))

 (s 0 (+ (expt (- (car l) avg) 2) s)))

 ((null l) s))))

 (sqrt (coerce (/ sum n) 'float)))))

;;;called by slot relaxation functions of all types.

(defun compare-level (level slot-info)

 (let ((lvl (incr-level slot-info)))

 (cond ((equal level 'level1)

 (or (equal lvl 1)

 (equal lvl 2)

 (equal lvl 'any)))

 ((equal level 'level2)

 (or (equal lvl 2)

 (equal lvl 'any)))

 ((equal level 'any) t))

)

)

;;;called by relax-var functions of all types.

;;;returns the clause in which the variable appears for the second time

;;;in a query.

(defun find-second-clause (var query)

 (cond ((null query) ())

 ((member var (flatten (first query))) (first query))

 (t (find-second-clause var (rest query))))

)

;;;called by relax-slot.

(defun relax-list-slot (level clause query slot-info constrained-slots)

 (if (compare-level level slot-info)

 ;find slot in clause

 (let* ((slotname (slotname slot-info))

 (classname (classname slot-info))

 (slot-val-pair

 (get-slot-value-pair classname slotname constrained-slots))

 (var-or-val (second slot-val-pair))

 (new-query

 (if (variable-p var-or-val)

 (relax-list-var level var-or-val slot-info clause query)

 (relax-list-val level var-or-val slot-info clause query))

)

)

 new-query

);end let*

);end if

);end defun

;;;called by relax-list-slot.

(defun relax-list-var (level var slot-info clause query)

 (let* ((second-clause

 (find-second-clause var (remove clause query :test #'equal)))

 (new-var (gensym "?-"))

 (new-second-clause (substitute new-var var second-clause :test #'equal))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (not (null

 (intersection ,new-var ,var)))))

)

)

 (append

 (substitute new-second-clause second-clause query :test #'equal)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-list-slot.

(defun relax-list-val (level var slot-info clause query)

 (let* ((new-var (gensym "?-"))

 (new-first-clause (substitute new-var var clause :test #'equal))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (not (null

 (intersection ,new-var (quote ,var))))))

)

)

 (append

 (substitute new-first-clause clause query :test #'equal)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-slot.

(defun relax-one-of-a-list-slot (level clause query slot-info constrained-slots)

 (if (compare-level level slot-info)

 ;find slot in clause

 (let* ((slotname (slotname slot-info))

 (classname (classname slot-info))

 (slot-val-pair

 (get-slot-value-pair classname slotname constrained-slots))

 (var-or-val (second slot-val-pair))

 (new-query

 (if (variable-p var-or-val)

 (relax-one-of-a-list-var level var-or-val slot-info clause query)

 (relax-one-of-a-list-val level var-or-val slot-info clause query))

)

)

 new-query

);end let*

);end if

);end defun

;;;called by relax-one-of-a-list-slot.

(defun relax-one-of-a-list-var (level var slot-info first-clause query)

 (let* ((second-clause

 (find-second-clause var (remove first-clause query :test #'equal)))

 (value-lst (value-list slot-info))

 (new-var (gensym "?-"))

 (new-second-clause (substitute new-var var second-clause))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (member ,new-var (quote ,value-lst)))

))

)

 (append

 (substitute new-second-clause second-clause query :test #'equal)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-one-of-a-list-slot.

(defun relax-one-of-a-list-val (level var slot-info first-clause query)

 (let* ((new-var (gensym "?-"))

 (new-first-clause (substitute new-var var first-clause))

 (value-lst (value-list slot-info))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (member ,new-var (quote ,value-lst)))

))

)

 (append

 (substitute new-first-clause first-clause query :test #'equal)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-slot.

(defun relax-class-slot (level clause query slot-info constrained-slots)

 (if (compare-level level slot-info)

 ;find slot in clause

 (let* ((slotname (slotname slot-info))

 (classname (classname slot-info))

 (slot-val-pair

 (get-slot-value-pair classname slotname constrained-slots))

 (var-or-val (second slot-val-pair))

 (new-query

 (if (variable-p var-or-val)

 (relax-class-var level var-or-val slot-info clause query)

 (relax-class-val level var-or-val slot-info clause query))

)

)

 (match-new-clauses new-query)

);end let*

);end if

);end defun

;;;called by relax-class-slot.

;;;assuming here that the second-clause is an object clause with

;;;only one superclass.

(defun relax-class-var (level var slot-info first-clause query)

 (let* ((second-clause

 (find-second-clause var (remove first-clause query :test #'equal)))

 (new-class (if (equal level 'level1)

 (first (get-superclasses (first second-clause)))

 (first (mapcar #'get-superclasses

 (get-superclasses (first second-clause))))))

 (new-second-clause (setf (first second-clause) new-class))

)

 (if (equal level 'any)

 (setf new-second-clause

 (append (list (first second-clause)

 (gensym "?-")) (cddr second-clause))))

 (substitute new-second-clause second-clause query)

);end let*

);end defun

;;;called by relax-class-slot.

(defun relax-class-val (level var slot-info first-clause query)

 (let* ((new-var (gensym "?-"))

 (new-first-clause (substitute new-var var first-clause))

 (class (type-of var))

 (superclasses (get-superclasses class))

 (typep-clauses (make-typep-clauses superclasses new-var))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 (list 'test typep-clauses)))

)

 (append

 (substitute new-first-clause first-clause query)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-class-val.

(defun make-typep-clauses (superclasses new-var)

 (cons 'or

 (do ((sc superclasses (cdr sc))

 (c () (setf c (cons (list 'typep new-var (first sc)) c)))

)

 ((null sc) c)))

)

;;;called by relax-slot.

(defun relax-one-of-ordered-list-slot (level clause query slot-info constrained-slots)

 (if (compare-level level slot-info)

 ;find slot in clause

 (let* ((slotname (slotname slot-info))

 (classname (classname slot-info))

 (slot-val-pair

 (get-slot-value-pair classname slotname constrained-slots))

 (var-or-val (second slot-val-pair))

 (new-query

 (if (variable-p var-or-val)

 (relax-one-of-ordered-list-var level var-or-val slot-info clause query)

 (relax-one-of-ordered-list-val level var-or-val slot-info clause query))

)

)

 new-query

);end let*

);end if

);end defun

;;;called by relax-one-of-ordered-list-slot.

(defun relax-one-of-ordered-list-var (level var slot-info first-clause query)

 (let* ((second-clause

 (find-second-clause var (remove first-clause query :test #'equal)))

 (lvl (if (equal level 'level1)

 1

 2))

 (value-lst (value-list slot-info))

 (new-var (gensym "?-"))

 (new-second-clause (substitute new-var var second-clause))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (close-position ,lvl ,new-var ,var (quote ,value-lst)))

))

)

 (append

 (substitute new-second-clause second-clause query :test #'equal)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-one-of-ordered-list-slot.

(defun relax-one-of-ordered-list-val (level var slot-info first-clause query)

 (let* ((new-var (gensym "?-"))

 (new-first-clause (substitute new-var var first-clause))

 (value-lst (value-list slot-info))

 (lvl (if (equal level 'level1)

 1

 2))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (close-position ,lvl ,new-var (quote ,var) (quote ,value-lst)))

))

)

 (append

 (substitute new-first-clause first-clause query)

 (list new-test-clause))

);end let*

);end defun

;;;called by one-of-ordered-list functions.

(defun close-position (level var2 var1 ordered-list)

 (let ((var1-pos (position var1 ordered-list))

)

 (cond ((not (minusp (- var1-pos level)))

 (let ((result1 nil)

 (result2 t))

 (setf result1

 (or (equal var2 (first (nthcdr (- var1-pos 1) ordered-list)))

 (equal var2 (first (nthcdr (+ var1-pos 1) ordered-list)))))

 (if (= level 2)

 (setf result2

 (or (equal var2 (first (nthcdr (- var1-pos 1) ordered-list)))

 (equal var2 (first (nthcdr (+ var1-pos 1) ordered-list))))))

 (and result1 result2)))

)))

(defun substitute-new-var (new-var old-var query)

 (cond ((null query) ())

 ((equal query old-var) new-var)

 ((not (listp query)) query)

 (t (cons (substitute-new-var new-var old-var (first query))

 (substitute-new-var new-var old-var (rest query))))

)

)

;;;replaces the clauses in the new clause lst for the clauses

;;;in the old clause list in the query.

(defun substitute-new-clauses (new-clause-lst old-clause-lst query)

 (do ((oc old-clause-lst (cdr oc))

 (nc new-clause-lst (cdr nc))

 (q query (setf q (substitute (first nc) (first oc) q :test #'equal)))

)

 ((null oc) q)

)

)

;;;called by relax-slot.

(defun relax-symbol-slot (level clause query slot-info constrained-slots)

 (if (compare-level level slot-info)

 ;find slot in clause

 (let* ((slotname (slotname slot-info))

 (classname (classname slot-info))

 (slot-val-pair

 (get-slot-value-pair classname slotname constrained-slots))

 (var-or-val (second slot-val-pair))

 (new-query

 (if (variable-p var-or-val)

 (relax-symbol-var level var-or-val slot-info clause query)

 (relax-symbol-val level var-or-val slot-info clause query))

)

)

 new-query

);end let*

);end if

);end defun

;;;called by relax-symbol-slot.

(defun relax-symbol-var (level var slot-info clause query)

 (let* ((second-clause

 (find-second-clause var (remove clause query :test #'equal)))

 (new-var (gensym "?-"))

 (new-second-clause (substitute new-var var second-clause :test #'equal))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 `(test (one-superclass-of-other-p ,new-var ,var)))

)

)

 (append

 (substitute new-second-clause second-clause query :test #'equal)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-symbol functions.

(defun one-superclass-of-other-p (v1 v2)

 (if (is-class v1)

 (let* ((classdef-v1 (get-classdef v1))

 (supers (get-superclasses classdef-v1)))

 (member v2 supers))

 ;else

 (if (is-class v2)

 (let* ((classdef-v2 (get-classdef v2))

 (supers (get-superclasses classdef-v2)))

 (member v1 supers))

;else

 nil))

)

;;;called by relax-symbol-slot.

(defun relax-symbol-val (level var slot-info clause query)

 (let* ((new-var (gensym "?-"))

 (new-first-clause (substitute new-var var clause :test #'equal))

 (classdef (get-classdef var))

 (supers (get-superclasses classdef))

 (new-test-clause

 (if (equal level 'any)

 '(test t)

 (if (is-class var)

 `(test (member ,new-var (quote ,supers)))

 '(test t))

))

)

 (append

 (substitute new-first-clause clause query :test #'equal)

 (list new-test-clause))

);end let*

);end defun

;;;called by relax-slot.

(defun relax-unknown-slot (level clause query slot-info constrained-slots)

 (if (compare-level level slot-info)

 ;find slot in clause

 (let* ((slotname (slotname slot-info))

 (classname (classname slot-info))

 (slot-val-pair

 (get-slot-value-pair classname slotname constrained-slots))

 (var-or-val (second slot-val-pair))

 (new-query

 (if (variable-p var-or-val)

 (relax-symbol-var level var-or-val slot-info clause query)

 (relax-symbol-val level var-or-val slot-info clause query))

)

)

 new-query

);end let*

);end if

);end defun

;;;called by relax-unknown-slot.

(defun relax-unknown-var (level var slot-info clause query)

 (let* ((second-clause

 (find-second-clause var (remove clause query :test #'equal)))

 (new-var (gensym "?-"))

 (new-second-clause (substitute new-var var second-clause :test #'equal))

)

 (substitute new-second-clause second-clause query :test #'equal)

);end let*

);end defun

;;;called by relax-unknown-slot.

(defun relax-unknown-val (level var slot-info clause query)

 (if (is-class var)

 (let* ((new-var (gensym "?-"))

 (new-first-clause (substitute new-var var clause :test #'equal))

)

 (substitute new-first-clause clause query :test #'equal)

);end let*

));end defun

(defun is-constrained (slot-info constr-slots)

 (let* ((clsname (classname slot-info))

 (sltname (slotname slot-info))

 (slot-value-pair (get-slot-value-pair clsname sltname constr-slots)))

 slot-value-pair

)

)

Appendix C Code For Why and WhyNot Questions

;;;Cynthia Martincic

;;;filename questions.cl

;;;Sept. 19 2000

(in-package :common-graphics-user)

;;;this function determines whether the objects in the diagram

;;;are actually connected, indicating a valid query.

(defun valid-query-p (query obj-lst)

 (let ((current-query (mapcar #'add-status-in-condition query)))

 (query-tester (get-query-test-clauses current-query)

 (query-matcher (get-query-instance-clauses current-query) obj-lst))

)

)

;;;this function should get what the user clicked on and build the query.

;;;returns when the object was created. The start-slot of the object is

;;;decremented by 1 because the context that led to its creation was the

;;;one just prior to its own context. The rule that fired in that prior

;;;context is the one that created the object. The window argument could be a

;;;diagram window or a rule-analysis window.

(defun why (query window question-str)

 (let* (answer

 (matching-object (find-earliest-matching-object query))

 (contxt-no (- (start-slot matching-object) 1))

 (contxt (find-context-by-number contxt-no))

 (rule (if contxt (first (instantiation contxt))))

 (control (cond ((typep window 'drawer) (drawer-control-dialog window))

 ((typep window 'rule-analysis)

 (find-control-window-from-r-a-window window))))

 (message-pane (find-widget :control-editable-text

 control)))

 (setf *indent-amt* (incr-indent))

 (if (= contxt-no -1)

 (setf answer (concatenate-strings

 (ps (format nil "The object matching your question "))

 (ps (format nil "~A" query))

 (ps (format nil "~% was initial data from ~A~%"

 (source matching-object)))))

 (setf answer

 (concatenate-strings

 (ps (format nil "The object matching your question "))

 (ps (format nil "~s" query))

 (ps (format nil "was created in cycle ~A by rule ~A~%~%"

 contxt-no rule))))

);end if

 (write-to-logfile-and-text-pane message-pane answer)

 (if (pop-up-yes-no-question

 (concatenate-strings answer

 (format nil "~%Do you want to see the rule?"))

 "System Answer")

 (show-r-a-window window question-str (list (eval rule))))

 (setf *indent-amt* (decr-indent))

);end let*

)

;;;this function calls variants of antecedent-tester and antecedent-

;;;matcher. Note that the two functions take different args - one takes a rule

;;;and the other takes clauses. This is, in part, why they cannot be used ;;;directly.

;;;this function returns the earliest matching object, which should always

;;;be the one at the end of the instance-lst returned, since the objects are

;;;added to the beginning of the *OB* list as they are created or modified.

(defun find-earliest-matching-object (query)

 (let ((instance-lst (query-tester (get-query-test-clauses query)

 (query-matcher (get-query-instance-clauses query)

OB))))

 (cdr (assoc (second (first query)) (first (reverse instance-lst))))

)

)

;;;the query is identical in form to a rule antecedent

;;;l-o-bls is a list of bindings

;;;this function returns the bindings for which the test clauses are true

(defun query-tester (query l-o-bls)

 (remove-if #'(lambda (bindings)

 (null (test-query-tests query bindings)))

 l-o-bls))

;;;args are a query and one binding list

;;;remove-test-term gets the test out of the test clause (test (= x y))

;;;get-a-t-c-2 gets the test clauses from the query.

(defun test-query-tests (query binding-list)

 (let ((lst (cons 'and

 (remove-test-term

 (substitution-in-tests (get-a-t-c-2 query)

 binding-list)))))

 (eval lst))

)

(defun get-query-instance-clauses (query)

 (get-a-i-c-2 query))

(defun get-query-test-clauses (query)

 (get-a-t-c-2 query))

;;;takes query object clauses and an object list and an optional list of ;;;bindings

;;;returns a list of bindings that match the query.

(defun query-matcher (ant-instance-clauses OB

 &optional (l-o-bls (list no-bindings)))

 (cond ((null ant-instance-clauses) l-o-bls)

 (t (let ((result (query-object-clause-finder-w-blist

 (first ant-instance-clauses) OB l-o-bls)))

 (cond ((null result) fail)

 (t (query-matcher (rest ant-instance-clauses)

 OB result)))))))

;;;args are one object clause, an object list and an optional list of bindings

;;;maps object-clause-matcher over a the object list

(defun query-object-clause-finder

 (clause instance-list &optional (binding-list no-bindings))

 (remove nil

 (mapcar #'(lambda (instance)

 (query-object-clause-matcher clause instance binding-list))

 instance-list)))

;;;args are one object clause, an object list and a list of bindings.

;;;maps object-clause-finder over a list of bindings

(defun query-object-clause-finder-w-blist

 (clause instance-list &optional (lbl (list no-bindings)))

 (apply #'append

 (mapcar #'(lambda (binding-list)

 (query-object-clause-finder clause instance-list binding-list))

 lbl)))

;;;one object clause, one instance and optional bindings

;;;creates a binding if successful

(defun query-object-clause-matcher (clause instance &optional

 (bindings no-bindings))

 (cond

 ((equal bindings fail) fail)

 ((not (typep instance (first clause))) fail)

 (t (let ((type-binding (cons (second clause)

 instance))

 (result (query-match-all-slots (rest (rest clause))

 instance bindings)))

 (if result (cons type-binding result))))))

;;;the body of a clause, an instance and a list of bindings.

;;;if the value for a slot in a clause is a constant

;;;if it is equal to the instance slot value, or if it is a list and it is a

;;;subset of the instance slot value, it is considered good match. This is

;;;to permit relatively easy questions of slots which are lists.

(defun query-match-all-slots (clause-body instance bindings)

 (cond

 ((equal bindings fail) fail)

 ((null clause-body) bindings)

 (t (let ((accessor-term (first clause-body))

 (clause-value (second clause-body)))

 (cond

 ((constant-p clause-value)

 (if (and (listp clause-value) (listp (funcall accessor-term

instance)))

 (if (subsetp clause-value (funcall accessor-term instance))

 (query-match-all-slots (rest (rest clause-body)) instance

bindings))

 (if (eql clause-value (funcall accessor-term instance))

 (query-match-all-slots (rest (rest clause-body)) instance

bindings)

 fail)))

 ((bound-p clause-value bindings)

 (if (equal (lookup clause-value bindings) (funcall accessor-term

instance))

 (query-match-all-slots (rest (rest clause-body)) instance

bindings)

 fail))

 (t (query-match-all-slots (rest (rest clause-body)) instance

 (extend-bindings clause-value

 (funcall accessor-term instance)

 bindings))))))))

;;;this function gets the user input, builds the query,

;;;checks to see if the object ever existed,

;;;checks to see if some portion of the query ever existed,

;;;if did exist in past, returns when it was deleted or modified

;;;and what rule did it,

;;;if never existed, call match-rule-consequents with the query

;;;to look for rules that could have created it.

;;;results consist of a list of list of the rule name and whether

;;;the rule consequent matches the query exactly or approximately.

;;;the argument, window, is the expert diagram or alternate diagram window.

(defun why-not (query window question-str)

 (let* (answer

 (control-window

 (cond ((typep window 'drawer) (drawer-control-dialog window))

 ((typep window 'rule-analysis)

 (find-control-window-from-r-a-window window))))

 (message-pane (find-widget :control-editable-text

 control-window))

)

 (setf *indent-amt* (incr-indent))

 (cond ((does-object-currently-exist-p query *OB*)

 (setf answer

 (concatenate-strings

 (ps (format nil "The object fitting your question"))

 (ps (format nil "~A" query))

 (ps (format nil "does exist."))

 (ps (format nil "So the WhyNot question cannot be

answered.~%"))

))

 (pop-up-message-window answer message-pane)

 (setf *indent-amt* (decr-indent)))

 ((did-object-exist-previously-p query *OB*)

 (let ((results (report-why-no-longer-exists

 (find-latest-matching-object query))))

 (setf answer

 (concatenate-strings

 (ps (format nil "The object fitting your question, "))

 (ps (format nil "~A" query))

 (ps (format nil "did exist."))

 (ps (format nil "It was ~A by rule ~A in cycle ~A. ~%"

 (first results) (second results) (third results)))))

 (pop-up-message-window answer message-pane)

 (setf *indent-amt* (decr-indent))))

 (t (let (results)

 (dolist (rule *RB* (remove-if #'null results))

 (setf results (cons (match-rule-consequents query rule) results))

);end dolist

 (setf results

 (remove-if #'null results))

 (if (>= (length results) 4)

 (setf results (remove-if #'not-match-query results)))

 (if (null results)

 (progn

 (setf answer

 (concatenate-strings

 (ps (format nil "There were no rules that could have

created "))

 (ps (format nil "~s" query))))

 (pop-up-message-window answer message-pane)

);end progn

 (progn

 (setf answer

 (concatenate-strings

 (ps (format nil

"The following rules might have resulted in an object matching your question: "))

 (ps (format nil "~A~%"

 (mapcar #'first results)))))

 (write-to-logfile-and-text-pane message-pane answer)

 (when (not (stringp question-str))

 (setf question-str (format nil "~s" question-str)))

 (if (pop-up-yes-no-question

 (concatenate-strings

 answer

 (format nil "~%Do you want to see the rules?"))

 "System Answer")

 (progn

 (show-r-a-window

 window question-str

 (substitute-query-values-in-rules

 results) results)

 (setf (rule-analysis-query-results

 (first (drawer-r-a-window control-window))) results)

);end progn

);end if

);end progn

);end if

) ;end let

);end t

);end cond

));end let* end defun

;;;this function checks to see if the object currently exists by

;;;calling valid-query-p on the current object base (this is the

;;;same function used in the why function and in why-not function

;;;on the alternate object base.

(defun does-object-currently-exist-p (query obj-lst)

 (valid-query-p query obj-lst))

;;;this function is just like valid-query-p except it does not add

;;; the status in constraint.

(defun did-object-exist-previously-p (query obj-lst)

 (query-tester (get-query-test-clauses query)

 (query-matcher (get-query-instance-clauses query) obj-lst))

)

;;;this function is very similar to the find-earliest-matching-object

;;;it just doesn't reverse the instance-lst.

(defun find-latest-matching-object (query)

 (let ((instance-lst (query-tester (get-query-test-clauses query)

(query-matcher (get-query-instance-clauses query) *OB*))))

 (cdr (assoc (second (first query)) (first instance-lst)))

)

)

;;;this function has to look up the context object that

;;;corresponds to the first of the end-context slot of the object

;;;find-which variable in the instantiation listed on the context

;;;object corresponds to the object in question and find which

;;;modify or delete -instance clause changed the object to status out

;;;return the "modified" or "deleted", the rule, and the context in

;;;a list.

(defun report-why-no-longer-exists (object)

 (let* ((context (find-context-by-number (- (car (end-slot object)) 1)))

 (fired (instantiation context))

 (rulename (first fired))

 (rule (eval rulename))

 (binding-list (rest fired))

 (var (find-var object binding-list))

 (clause (find-var-in-clause var (get-consequent rule)))

 (action (if (equal (first clause) 'modify-instance)

 'modified

 'deleted)))

 (list action rulename (start-slot context))

)

)

(defun find-var-in-clause (var consequent)

 (cond ((null consequent) fail)

 ((equal (first (first consequent)) 'modify-instance)

 (if (member var (first consequent))

 (first consequent)

 (find-var-in-clause var (rest consequent))))

 ((equal (first (first consequent)) 'delete-instance)

 (if (member var (first consequent))

 (first consequent)

 (find-var-in-clause var (rest consequent))))

 (t (find-var-in-clause var (rest consequent)))

)

)

(defun find-var (object binding-lst)

 (cond ((equal object (cdr (first binding-lst)))

 (first (first binding-lst)))

 ((null binding-lst) fail)

 (t (find-var object (rest binding-lst)))

)

)

(defun match-rule-consequents (query rule)

 (let* ((rulename (second rule))

 (consequent (get-consequent rule))

 (results (query-matches-consequent query consequent)))

 (if results

 (cons rulename results)))

)

(defun query-matches-consequent (query consequent)

 (cond ((null consequent) nil)

 ((exactly-matches-p query (car consequent))

 (list 'exact query (car consequent)))

 ((approx-matches-p query (car consequent))

 (list 'approx query (car consequent)))

 (t (query-matches-consequent query (cdr consequent)))

)

)

(defun exactly-matches-p (query conseq-clause)

 (cond ((equal (first conseq-clause) 'modify-instance)

 (exact-match-modify-cl query (rest conseq-clause)))

 ((equal (first conseq-clause) 'make-rbr-instance)

 (exact-match-create-cl query (rest conseq-clause)))

 (t nil)

)

)

(defun approx-matches-p (query conseq-clause)

 (cond ((equal (first conseq-clause) 'modify-instance)

 (approx-match-modify-cl query (rest conseq-clause)))

 ((equal (first conseq-clause) 'make-rbr-instance)

 (approx-match-create-cl query (rest conseq-clause)))

 (t nil)

)

)

(defun exact-match-modify-cl (query conseq-clause)

 ;;;if the class is the same, continue

 (if (equal (list 'quote (first (first query)))

 (first conseq-clause))

 (exact-match-modify-cl-1 (rest (rest (first query))) (rest conseq-clause)))

 ;;;above called without the class or the instance variable of the query.

)

(defun exact-match-modify-cl-1 (query-slots clause-slots)

 (cond ((null query-slots) t)

 (t (let* ((q-slot (list 'quote (first query-slots)))

 (q-slot-value (second query-slots))

 (slot-in-clause (member q-slot clause-slots :test #'equal)))

 (if (and slot-in-clause

 (equal q-slot-value (second slot-in-clause)))

 (exact-match-modify-cl-1

 (cddr query-slots) clause-slots))))

)

)

(defun exact-match-create-cl (query conseq-clause)

 ;;;if the class is the same, continue

 (if (equal (list 'quote (first (first query)))

 (first conseq-clause))

 (exact-match-create-cl-1 (rest (rest (first query))) (rest conseq-clause)))

 ;;;above called without the class or the instance variable of the query.

)

(defun exact-match-create-cl-1 (query-slots clause-slots)

 (cond ((null query-slots) t)

 (t (let* ((q-slot (symbol-name (first query-slots)))

 (q-slot-value (second query-slots))

 (slot-in-clause (dolist (x clause-slots)

 (if (and (symbolp x)

 (equal q-slot (symbol-name x)))

 (return x))))

 (rest-of-clause (member slot-in-clause clause-slots

:test #'equal)))

 (if (and slot-in-clause

 (equal q-slot-value (second rest-of-clause)))

 (exact-match-create-cl-1

 (cddr query-slots) clause-slots))))

)

)

(defun approx-match-modify-cl (query conseq-clause)

 ;;;if the class is the same, continue

 (if (equal (list 'quote (first (first query)))

 (first conseq-clause))

 (approx-match-modify-cl-1 (rest (rest (first query)))

(rest conseq-clause)))

 ;;;above called without the class or the instance variable of the query.

)

;;alternate version of above in which a rule matches if it matches only

;;;one slot.

(defun approx-match-modify-cl-1 (query-slots clause-slots)

 (cond ((null query-slots) nil)

 (t (let* ((q-slot (list 'quote (first query-slots)))

 (slot-in-clause (member q-slot clause-slots :test #'equal)))

 (if (not slot-in-clause)

 (approx-match-modify-cl-1 (cddr query-slots) clause-slots)

 slot-in-clause)

))

)

)

(defun approx-match-create-cl (query conseq-clause)

 ;;;if the class is the same, continue

 (if (equal (list 'quote (first (first query)))

 (first conseq-clause))

 (approx-match-create-cl-1

(rest (rest (first query))) (rest conseq-clause)))

 ;;;above called without the class or the instance variable of the query.

)

;;;this function does not try to match on the value of the slot,

;;;only that the slot is in the clause

(defun approx-match-create-cl-1 (query-slots clause-slots)

 (cond ((null query-slots) t)

 (t (let* ((q-slot (symbol-name (first query-slots)))

 (slot-in-clause (dolist (x clause-slots)

 (if (and (symbolp x)

 (equal q-slot (symbol-name x)))

 (return x))))

)

 (if slot-in-clause

 (approx-match-create-cl-1

 (cddr query-slots) clause-slots))))

)

)

(defun refine-query (query obj-lst)

 (let* ((current-query (mapcar #'(lambda (clause)

 (if (not (equal (first clause) 'test))

 (append clause '(status in))

 clause))

 query))

 (current-bindings (first (query-matcher

 (get-query-instance-clauses

current-query) obj-lst))))

 (setf current-query (get-correct-slots

 (get-correct-classes

current-query current-bindings)

 current-bindings))

)

)

(defun get-correct-slots (query bindings)

 (let* ((class-name (first (first query)))

 (slots (get-slot-names class-name))

 (var1 (second (first query)))

 (bound-object1 (rest (get-binding var1 bindings)))

 (var2 (second (second query)))

 (bound-object2 (rest (get-binding var2 bindings)))

 (matching-slot (dolist (s slots)

 (if (equal

(slot-value bound-object1 s) bound-object2)

 (return s)))))

 (list

 (append (list class-name var1 matching-slot var2)

 (rest (rest (first query))))

 (second query))

)

)

;;;this function is specific for the ER domain. It gets the correct

;;;quantity slot for the entity on the relation.

(defun get-correct-slots-2 (query bindings card)

 (let* ((class-name (first (first query)))

 (slots (get-slot-names class-name))

 (var1 (second (first query)))

 (bound-object1 (rest (get-binding var1 bindings)))

 (var2 (second (second query)))

 (bound-object2 (rest (get-binding var2 bindings)))

 (matching-slot (dolist (s slots)

 (if (equal

(slot-value bound-object1 s) bound-object2)

 (return s))))

 (card-slot (second (member matching-slot slots))))

 (list

 (append (list class-name var1 matching-slot var2 card-slot card)

 (rest (rest (first query))))

 (second query))

)

)

;;;the user question may use a superclass name of an object,

;;;rather than the actual class name.

;;;Since the rules for the ER application apply to the more

;;;specific class, the more specific class - the class that

;;;the object matches to, must be found and substitued in

;;;for the superclass before submitting the query to the

;;;rule -lookup procedures.

(defun get-correct-classes (query bindings &optional new-query)

 (cond ((null query) (reverse new-query))

 ((equal (first (first query)) 'test)

 (get-correct-classes

(rest query) bindings (cons (first query) new-query)))

 (t (let* ((query-class-name (first (first query)))

 (query-class-var (second (first query)))

 (bound-class (if (bound-p query-class-var bindings)

 (type-of (rest

 (get-binding query-class-var bindings))))))

 (if (equal query-class-name bound-class)

 (get-correct-classes (rest query)

bindings (cons (first query) new-query))

 (get-correct-classes (rest query) bindings

 (cons (substitute bound-class query-class-name

 (first query)) new-query)))

))

)

)

;;;adds the 'status in' condition to object clauses of queries.

(defun add-status-in-condition (clause)

 (if (not (equal (first clause) 'test))

 (append clause '(status in))

 clause)

)

;;;recursively get parents of instance until reach original instance.

;;;list returned starts with instance given as the first argument and

;;;ends with the earliest.

(defun get-instance-parents (instance)

 (cond ((null instance) ())

 (t (cons instance (get-instance-parents (parent instance)))))

)

;;;recursively get children of instance until reach the last one.

;;;list returned starts with instance given as the first argument

;;;and ends with the most current.

(defun get-instance-children (instance)

 (cond ((null instance) ())

 (t (cons instance (get-instance-children (children instance)))))

)

;;;given an instance, this function locates the parents and children of

;;;the instance, includes them in a list with the instance

;;;and sorts the list according to the start-slot so the first

;;;instantiation is first in the list.

(defun get-all-related-instances (instance)

 (sort (remove-duplicates

 (append (get-instance-parents instance)

 (get-instance-children instance)))

 #'< :key #'start-slot

)

)

(defun report-instance-history (instance-lst)

 (cond ((null instance-lst) ())

 (t (report-creation (first instance-lst))

 (loop

 (if (null (rest instance-lst))

 (progn

 (report-last-instance (first instance-lst))

 (return))

 (progn

 (compare-first-and-second instance-lst)

 (setf instance-lst (rest instance-lst)))))

)

)

)

(defun report-creation (instance)

 (ps (format nil "The object was first created in cycle, ~s, with properties:~%~s"

 (start-slot instance) (get-slots-and-values instance)))

)

(defun report-last-instance (instance)

 (if (= (length (end-slot instance)) 1)

 (ps (format nil "The object exists at the end of the expert system run.~%"

))

 (ps (format nil "The object was deleted in cycle, ~s, by rule, ~s.~%"

 (car (end-slot instance))

 (first (instantiation

 (find-context-by-number

 (car (end-slot instance)))))

))

)

)

(defun compare-first-and-second (instance-lst)

 (let* ((inst1 (first instance-lst))

 (inst2 (second instance-lst))

 (properties1 (get-slots-and-values inst1))

 (properties2 (get-slots-and-values inst2))

 (diff-lst (do ((p1 properties1 (cdr p1))

 (p2 properties2 (cdr p2))

 (diff () (if (equal (first p1) (first p2))

 diff

 (setf diff

 (cons (list (first p1) (first p2))

 diff)))))

 ((null p1) diff)))

)

)

)

Appendix D Code for Diagram Questions

;;;functions for asking questions from the diagrams

(in-package :common-graphics-user)

(defun find-attributes (hotspts)

 (let (attributes)

 (dolist (h hotspts attributes)

 (if (typep (shape h) 'my-ellipse)

 (setf attributes (cons (shape h) attributes)))

))

)

(defun find-entities (hotspts)

 (let (entities)

 (dolist (h hotspts entities)

 (if (typep (shape h) 'my-box)

 (setf entities (cons (shape h) entities)))

))

)

(defun find-relations (hotspts)

 (let (relations)

 (dolist (h hotspts relations)

 (if (typep (shape h) 'my-diamond)

 (setf relations (cons (shape h) relations)))

))

)

(defun find-cardinality (hotspts)

 (let (card)

 (dolist (h hotspts card)

 (if (typep (shape h) 'my-line)

 (setf card (cons (shape h) card)))

))

)

(defun find-isa-relations (hotspts)

 (let (ir)

 (dolist (h hotspts ir)

 (if (typep (shape h) 'my-triangle)

 (setf ir (cons (shape h) ir)))

))

)

;;;given a bitmap-pane, returns the highlighted hotspots.

(defun highlighted-hotspots (pane)

 (let (hl-hotspots

 (hotspts (hotspots pane)))

 (dolist (h hotspts hl-hotspots)

 (if (highlighted h)

 (setf hl-hotspots (cons h hl-hotspots)))))

)

(defun why-question-1 (window)

 (let* ((pane (frame-child window))

 (hh (highlighted-hotspots pane))

 (attributes (find-attributes hh))

 (entities (find-entities hh))

 (relations (append (find-relations hh)

 (find-isa-relations hh)))

 (card (find-cardinality hh))

 (why-window (equal (name window) :exp-diagram))

 (ob-lst (if why-window *OB* *alt-ob*))

 (message-pane (find-widget :control-editable-text

 (drawer-control-dialog window))))

 (write-to-logfile (ps (format nil "why-question-1 ~s~%" why-window)))

 (if (not (and (= (length attributes) 1)

 (= (length entities) 1)

 (= (length relations) 0)

 (= (length card) 0)))

 (progn

 (send-error-message

 (format nil

 "You should choose 1 attribute and 1 entity for question 1.~%")

 (list (mapcar #'label attributes)

 (mapcar #'label entities)))

) ;end progn

;;;else

 (let* (question-str

 (query `((entity ?e label ,(label (car entities))

 attributes ,(list (label (car attributes))))))

 (current-bindings (first (query-matcher

 (get-query-instance-clauses query) ob-lst))))

 (if (null current-bindings)

 (send-error-message

 (format nil

 "Appropriate objects were not selected for question 1.~%~s is

not connected to ~s.~%"

 (label (car attributes)) (label (car entities)))

 (list (label (car attributes)) (label (car entities))))

;;;else

 (progn

 (if why-window

 (setf question-str

 (format nil "Why is this attribute, ~s, attached to this

entity, ~s?~%"

 (label (car attributes)) (label (car entities))))

 (setf question-str

 (format nil "Why is this attribute, ~s, NOT attached to this

entity, ~s?~%"

 (label (car attributes)) (label (car entities))))

);end if

 (write-to-logfile-and-text-pane message-pane

 (concatenate-strings

 (ps (format nil "Your question is: "))

 (ps question-str)))

 (write-to-logfile (ps (format nil "~%which translates to ~% ~s ~%"

 query)))

 (if why-window

 (why query window question-str)

 (why-not query window question-str)))) ;end if end progn end if

) ;end let*

) ;end if

) ;end let*

 (clear-all-highlights window)

)

(defun why-question-2 (window)

 (let* ((pane (frame-child window))

 (hh (highlighted-hotspots pane))

 (attributes (find-attributes hh))

 (relations (find-relations hh))

 (entities (find-entities hh))

 (card (find-cardinality hh))

 (why-window (equal (name window) :exp-diagram))

 (ob-lst (if why-window *OB* *alt-ob*))

 (message-pane (find-widget :control-editable-text

 (drawer-control-dialog window)))

)

 (write-to-logfile (ps (format nil "why-question-2 ~s~%"

 why-window)))

 (if (not (and (= (length attributes) 1)

 (= (length relations) 1)

 (= (length entities) 0)

 (= (length card) 0)))

 (progn

 (send-error-message

 (format nil

 "You should choose 1 attribute and 1 relation for question 2~%")

 (list (mapcar #'label attributes)

 (mapcar #'label relations)))

) ;end progn

;;;else

 (let* (question-str

 (query `((relation ?r label ,(label (car relations))

 attributes ,(list (label (car attributes))))))

 (current-bindings (first (query-matcher

 (get-query-instance-clauses query) ob-lst))))

 (if (null current-bindings)

 (send-error-message

 (format nil "Appropriate objects were not selected for the

question 2. ~%~s is not connected to ~s~%"

 (label (car attributes)) (label (car relations))))

;;;else

 (progn

 (if why-window

 (setf question-str

 (format nil "Why is this attribute, ~s, attached to this

relation, ~s?~%"

 (label (car attributes)) (label (car relations))))

 (setf question-str

 (format nil "Why is this attribute, ~s, NOT attached to this

relation, ~s?~%"

 (label (car attributes)) (label (car relations))))

);end if

 (write-to-logfile-and-text-pane message-pane

 (concatenate-strings

 (ps (format nil "Your question is: "))

 (ps question-str)))

 (setf query (get-correct-classes query current-bindings))

 (write-to-logfile (ps (format nil "which translates to ~% ~s ~%"

 query)))

 (if why-window

 (why query window question-str)

 (why-not query window question-str)))) ;end if end progn end if

)));end let* end if end let*

 (clear-all-highlights window)

)

(defun why-question-3 (window)

 (let* ((pane (frame-child window))

 (hh (highlighted-hotspots pane))

 (entities (find-entities hh))

 (relations (append (find-relations hh)

 (find-isa-relations hh)))

 (attributes (find-attributes hh))

 (card (find-cardinality hh))

 (why-window (equal (name window) :exp-diagram))

 (ob-lst (if why-window *OB* *alt-ob*))

 (message-pane (find-widget :control-editable-text

 (drawer-control-dialog window))))

 (write-to-logfile (format nil "why-question-3 ~s~%" why-window))

 (if (not (and (= (length entities) 1)

 (= (length relations) 1)

 (= (length attributes) 0)

 (= (length card) 0)))

 (progn

 (send-error-message

 (format nil "You should choose 1 entity and 1 relation for question

3~%")

 (list (mapcar #'label entities)

 (mapcar #'label relations)))

);end progn

;;;else

 (let* (question-str

 (query `((relation ?r label ,(label (car relations)))

 (entity ?e label ,(label (car entities)))

 (test (assoc ?e (get-entities-with-cardinality ?r)))))

 (current-bindings

 (query-matcher

 (get-query-instance-clauses query) ob-lst)))

 (if (null current-bindings)

 (send-error-message

 (format nil "Appropriate objects were not selected for the

question 3. ~%~s is not connected to ~s~%"

 (label (car entities))

 (label (car relations))))

;;;else

 (progn

 (if (> (length current-bindings) 1)

 (setf current-bindings

 (find-correct-entity-relation-binding current-bindings))

 (setf current-bindings (first current-bindings))

);end if

 (if why-window

 (setf question-str

 (format nil "Why is this entity, ~s, in this relation, ~s?~%"

 (label (car entities)) (label (car relations))))

 (setf question-str

 (format nil "Why is this entity, ~s, NOT in this relation,

~s?~%"

 (label (car entities)) (label (car relations))))

);end if

 (write-to-logfile-and-text-pane message-pane

 (concatenate-strings

 (ps (format nil "Your question is: "))

 (ps question-str)))

 (setf query

 (get-correct-classes query current-bindings)

)

 (write-to-logfile (ps (format nil "which translates to ~% ~s ~%"

 query)))

 (if why-window

 (why query window question-str)

 (why-not query window question-str))

);end progn

));end if end let*

) ;end if

 (clear-all-highlights window)

);end let*

)

(defun why-question-4 (window)

 (let* ((pane (frame-child window))

 (hh (highlighted-hotspots pane))

 (entities (find-entities hh))

 (relations (find-relations hh))

 (card (find-cardinality hh))

 (attributes (find-attributes hh))

 (card-term (if (and card (equal (label (car card)) 'One))

 1

 'many))

 (why-window (equal (name window) :exp-diagram))

 (ob-lst (if why-window *OB* *alt-ob*))

 (message-pane (find-widget :control-editable-text

 (drawer-control-dialog window)))

)

 (write-to-logfile (format nil "why-question-4 ~s~%" why-window))

 (if (not (and (= (length entities) 1)

 (= (length relations) 1)

 (= (length card) 1)

 (= (length attributes) 0)))

 (progn

 (send-error-message

 (format nil

 "You should choose 1 entity, 1 cardinality and 1 relation for

question 4~%")

 (list (mapcar #'label entities) (mapcar #'label relations)

 card-term))

);end progn

;;;else

 (if (not (card-on-entity (car card) (car entities)))

 (progn

 (send-error-message

 (format nil

 "The cardinality highlighted is not associated with the entity

highlighted.~%")

 (list (label (car card)) (label (car entities))))

);end progn

;;;else

 (let* (question-str

 (query `((relation ?r label ,(label (car relations)))

 (entity ?e label ,(label (car entities)))

 (test (equal (list ?e card-term)

 (assoc ?e (get-entities-with-cardinality

?r))))))

 (current-bindings (first (query-matcher

 (get-query-instance-clauses query) ob-lst))))

 (if (null current-bindings)

 (send-error-message

 (format nil

 "Appropriate objects were not selected for question 4.~%~s is

not connected to ~s with cardinality ~s~%"

 (label (car entities))

 (label (car relations)) (label (car card))))

;;;else

 (progn

 (if why-window

 (setf question-str

 (format nil "Why is this entity, ~s, in this relation, ~s,

with cardinality, ~s?~%"

 (label (car entities))

 (label (car relations))

 (label (car card))))

 (setf question-str

 (format nil "Why is this entity, ~s, NOT in this relation,

~s, with cardinality, ~s?~%"

 (label (car entities))

 (label (car relations))

 (label (car card))))

);end if

 (write-to-logfile-and-text-pane message-pane

 (concatenate-strings

 (ps (format nil "Your question is: "))

 (ps question-str)))

 (setf query

 (get-correct-slots-2

 (get-correct-classes query current-bindings)

 current-bindings card-term))

 (write-to-logfile (ps (format nil "which translates to ~% ~s ~%"

 query)))

 (if why-window

 (why query window question-str)

 (why-not query window question-str))

) ;end progn

));end if end let*

)) ;end if (not end if

 (clear-all-highlights window)

);end let*

)

(defun send-error-message (strng &optional lst)

 (pop-up-message-dialog (screen *system*) "Error" strng nil "OK")

 (write-to-logfile (ps (concatenate-strings "ERROR " strng)))

 (if lst

 (write-to-logfile (ps (format nil "~s~%" lst))))

)

(defun card-on-entity (lne ent)

 (let ((pos1 (list (position-x (pos1 lne))

 (position-y (pos1 lne))))

 (pos2 (list (position-x (pos2 lne))

 (position-y (pos2 lne))))

 (entity-midpoints (list (list (position-x (center-top-shape ent))

 (position-y (center-top-shape ent)))

 (list (position-x (center-right-shape ent))

 (position-y (center-right-shape ent)))

 (list (position-x (center-bottom-shape ent))

 (position-y (center-bottom-shape ent)))

 (list (position-x (center-left-shape ent))

 (position-y (center-left-shape ent))))))

 (or (member pos1 entity-midpoints :test #'equal)

 (member pos2 entity-midpoints :test #'equal))

)

)

(defun find-correct-entity-relation-binding (bdgs)

 (dolist (x bdgs)

 (let ((relation (find-relation x))

 (entity (find-entity x)))

 (if (assoc entity (get-entities-with-cardinality relation))

 (return x)))

)

)

(defun find-relation (bdg)

 (car (remove-if-not

 #'(lambda (x)

 (typep x 'relation))

 (mapcar #'cdr bdg)))

)

(defun find-entity (bdg)

 (car (remove-if-not

 #'(lambda (x)

 (typep x 'entity))

 (mapcar #'cdr bdg)))

)

Appendix E Observational Study Materials

Pre-software-use Questionnaire
Please answer the following questions about your education and experience. Your answers will be kept confidential.

1. What education level have you attained?

a) some college (what year___________) b) bachelors
c) masters level
d) above masters level

2. How many years have you used personal computers?

a) less than 1 year
b) 1-3 years

c) 3-5 years

d) more than 5 years

3. How many programming languages have you used?

a) 0

b) 1

c) 2

d) 3

e)more than 3

4. In order to participate in this study, you stated that you have had some experience with or exposure to rule-based expert systems. Please indicate the type of experience you have with this type of system.

a) saw some examples in a class or a book

b) constructed a small rule-based system for a class project

c) worked with such systems in a commercial environment

d) training for this research study

5. Where (which course or commercial environment) did you obtain this experience?

6. In order to participate in this study, you stated that you have had some experience with or exposure to entity relationship diagrams. Please indicate the type of experience you have with this type of diagram.

a) saw some examples in a class or a book

b) constructed some small entity relationship diagrams for a class assignment or project

c) worked with such diagrams in a commercial environment

d) training for this research study

7. Where (which course or commercial environment) did you obtain this experience?

INSTRUCTIONS

For each problem under the “Testing” menu on the Control Window:

1. Read the problem description and look at both diagrams.

2. Answer Question 1 in the Answer Pane on the Control Window.

3. Using the QUE question facilities and the other utilities provided, try to determine how the expert system might have come up with the alternate diagram if something (either a rule constraint or initial input) was different. Try to determine the most basic source of the difference.
4. Answer Questions 2 through 4 in the Answer Pane on the Control Window.

5. Proceed to the next problem.

The questions that you are asked to answer for each problem are:

Question 1

Which diagram is correct or can both be considered to be correct?

Question 2

Why did the expert system create the objects that are not in the Alt. diagram?

Please identify the objects and rules that led to the objects in the expert system diagram that are not in the alternate diagram.

Question 3

Why didn't the expert system create the objects that are not in the exp. sys. diagram?

Please try to identify how something in the expert system, either an object or rule constraint, that might have resulted in the expert system creating the objects in question. Try to construct a possible sequence that could have resulted in the alternate diagram using objects or rules that are as close as possible to the expert system’s rules and the initial input for this problem.

Question 4
Is the difference between the diagrams significant?

Post-software-use Questionnaire

Please answer the questions about the experiment you just completed. We are interested in your opinions about the system. Your answers will be kept confidential.

On the answer scales below, please mark (X) the answer that best corresponds with your opinions.

1. To what extent were you satisfied with the selection of question templates on the diagram windows?

Extremely Rather Somewhat Neither Somewhat
Rather Extremely

Dissatisfied Dissatisfied Dissatisfied

 Satisfied Satisfied Satisfied

	
	
	
	
	
	
	

 1

 2
 3

4
 5

 6

 7

2. Please indicate other types of questions you would have liked to been able to ask.

3. To what extent were you satisfied with the information presented in the Rules and Objects window?

Extremely Rather Somewhat Neither Somewhat
Rather Extremely

Dissatisfied Dissatisfied Dissatisfied

 Satisfied Satisfied Satisfied

	
	
	
	
	
	
	

 1

 2
 3

4
 5

 6

 7

4. Do you have any comments or suggestions regarding the Rules and Objects window? If so, please write them here.

Post-software-use Questionnaire

5. To what extent were you satisfied with the information presented in the Rule Analysis window?

Extremely Rather Somewhat Neither Somewhat
Rather Extremely

Dissatisfied Dissatisfied Dissatisfied

 Satisfied Satisfied Satisfied

	
	
	
	
	
	
	

 1

 2
 3

4
 5

 6

 7

6. Do you have any comments or suggestions regarding the Rule Analysis window? If so, please write them here.

7. To what extent were you satisfied with the information presented in the Message Pane on the Control window?

Extremely Rather Somewhat Neither Somewhat
Rather Extremely

Dissatisfied Dissatisfied Dissatisfied

 Satisfied Satisfied Satisfied

	
	
	
	
	
	
	

 1

 2
 3

4
 5

 6

 7

8. Do you have any comments or suggestions regarding the Message Pane ? If so, please write them here

9. Overall, how difficult was it for you to answer the questions for each problem?

Extremely Rather Somewhat Neither Somewhat
Rather Extremely

Difficult Difficult Difficult

 Easy Easy Easy

	
	
	
	
	
	
	

 1

 2
 3

4
 5

 6

 7

Post-software-use Questionnaire

10. Overall, do you feel that you have a good understanding of how the expert system that produced the entity relationship diagrams functioned? In your own words, please describe what your understanding of how the expert system functions, what sorts of objects were used as input, and what sorts of objects were created and deleted as the rules fired.

11. How competent do you think the expert system was in the task of constructing ER diagrams from the noun and verbs of the problem description?

Extremely Rather Somewhat OK Somewhat
Rather Extremely

Incompetent Incompetent Incompetent
 Competent Competent Competent

	
	
	
	
	
	
	

 1

 2
 3

4
 5

 6

 7

12. Do you have any further comments or suggestions that you think would be useful for this software? Please write them here.

Thank you very much for your participation.

Post-software-use Questionnaire
ERD-QUE User Manual

Version 1.0

Table of Contents

(omitted in this copy)

1.0 The Control Window

[image: image2.jpg]£ Contiol Window User ID# 56009

System Traring Testing Utiies Edt

Message Pane

User IDH 56003

8217 2/1/20m

Trsiring Problem 2

Answer Pane
Submit Answer 81 || Gk i

A (A

The Control Window is opened upon opening the application and remains open during the entire session. This window contains the Message Pane, and the Answer Pane and a number of menus: The System Menu, The Training Menu, The Testing Menu, and The Utilities Menu.

The Control Window Menus
System Menu

· New User – A new user will go to the System Menu selection and chose New User. The user will assigned a random ID number.

· Re-Set User – If the system has terminated before the user is done with the experiment, the user can be re-instated by choosing this selection. A pop-up window will appear asking for the user’s ID number which will have been recorded by the investigator. This selection will allow continuation of the user’s previous log and message files.

· Exit – This selection exits the application.

Training and Testing Menus
These menus contain selections that will display one of the two training and the four testing entity-relationship diagrams.

Utilities Menu
· Rules and Objects – Opens the Rules and Objects window described below.

· Rule Analysis – Opens the Rule Analysis window described below.
Edit Menu
This menu eliminates some typing in answering the questions for each problem.

· Copy – Allows the user to copy a highlighted selection in the Message Pane to memory. To copy, highlight a selection in the Message Pane and choose Edit/Copy.

· Paste – Allows the user to paste a selection that has been copied from the Message Pane to the Answer Pane. To paste, place the cursor where the copied phrase will be inserted and Choose Edit/ Paste.

Message Pane

The message pane will keep a record of all of the user’s actions and all answers to user questions. It can be consulted at any time so that the user can review his actions and the answers that the system provided. The user can copy information from the Message Pane to the Answer Pane when answering the questions for each problem.

Answer Pane
In the bottom portion of the Control Window, the user is given a window to type answers to the four questions for each problem. The question to be answered can be viewed by holding the mouse cursor over the active button. The user cannot move to the second question without answering the first. Likewise, after a question is answered, the student cannot go back and change his answer. After the user has entered the answer to a question in the Answer Pane, the active button should be clicked. The next button will become active.

2.0 ER Problem Windows

When the user chooses a training problem or a testing problem from the Training or Testing Menus in the Control Window, three windows will be displayed

· the Problem Description window

· the Expert System Diagram window, and

· the Alternate Diagram Window.

[image: image3.jpg][The ManeyLand Bark wanls ta keep track of customers,
accourts and branches in s new database. Each branch
has a e, ci. and branch ID code. Each customer has &
[name, steee, city, and urique SSN. Each account has a
cutert balarce nd s urique account numbe for the
Eranch in which s located. A customer can have several
[sccourts at one or more branches, but each accountis
lacated at a specifc ranch. An account may belang to
mare than an custome [int accourt),

The Problem Description Window

The Problem Description window is a read-only text window that contains a description of the situation for which an entity-relationship diagram should be constructed.

[image: image4.jpg](o]

£ Expert System

[om oot wme wma v

‘ BRANCH M Has N CUSTOMER

N

accouT @ DG D

accTND) (CURRENTBAL

o | M

The Expert Diagram Window
The Expert Diagram window contains a diagram that represents the expert system’s solution to the problem written in the Problem Description window. This diagram contains a toolbar with four question selections. The question selections are four different question templates labeled Why1 through Why4. Holding the cursor over one of these selections reveals the question template that will be asked if that option is selected. Each question is interpreted as a question asking the expert system why it created some combination in the diagram.

To ask a question, the user selects appropriate objects by highlighting the objects in the diagram and then clicks on the question. If inappropriate objects are selected, an error message will instruct the user to choose appropriate objects. The system’s answer to the question will be provided in a pop-up window and will also be written in the Message Pane on the Control Window.

· Why1 – The question template is “Why is an attribute, X, connected to an entity, Y?” where X is an attribute depicted in the diagram connected to Y which is an entity depicted in the diagram. To ask this type of question, the user should click on an attribute and an entity to which it is connected in the diagram and then click on Why1.

· Why2 – The question template is “Why is an attribute, X, connected to a relation, Y?” where X is an attribute depicted in the diagram connected to Y which is a relation depicted in the diagram. To ask this type of question, the user should click on an attribute and a relation to which it is connected in the diagram and then click on Why2.

· Why3 – The question template is “Why is an entity, X, connected to a relation, Y?” where X is an entity depicted in the diagram connected to Y which is a relation depicted in the diagram. To ask this type of question, the user should click on an entity and a relation to which it is connected in the diagram and then click on Why3.

· Why4 – The question template is “Why is an entity, X, connected to a relation, Y with cardinality, Z?” where X is an entity depicted in the diagram connected to Y which is a relation depicted in the diagram and Z is the cardinality associated with the connection. To ask this type of question, the user should click on an entity, a relation to which it is connected in the diagram and the associated cardinality and then click on Why4.

[image: image5.jpg]Clear WhyNotl WhyNoi2 WhyNot3 Whyhotd

BRANCH ECCOUNT. CUSTOMER

CURRENT AL

“ _>l;I

The Alternate Diagram
The alternate diagram represents an alternate solution to the problem in the Problem Description window. This diagram may or may not be another appropriate entity relationship diagram solution for the problem description. (There can be more than one correct diagram for an entity relationship problem.) This diagram contains a toolbar with four question selections, similar to those in the Expert System Diagram window. The question selections are four different question templates labeled WhyNot1 through WhyNot4. Holding the cursor over one of these selections reveals the question template that will be asked if that option is selected. Each question is interpreted as a question asking the expert system why it did not create some combination in the alternate diagram.

To ask a question, the user selects appropriate objects by highlighting the objects in the diagram and then clicks on the question. If inappropriate objects are selected, an error message will instruct the user to choose appropriate objects. The system’s answer to the question will be provided in a pop-up window and will also be written in the Message Pane on the Control Window.

· WhyNot1 – The question template is “Why is an attribute, X, not connected to an entity, Y?” where X is an attribute depicted in the diagram connected to Y, which is an entity depicted in the diagram. To ask this type of question, the user should click on an attribute and an entity to which it is connected in the diagram and then click on WhyNot1.

· WhyNot2 – The question template is “Why is an attribute, X, not connected to a relation, Y?” where X is an attribute depicted in the diagram connected to Y, which is a relation depicted in the diagram. To ask this type of question, the user should click on an attribute and a relation to which it is connected in the diagram and then click on WhyNot2.

· WhyNot3 – The question template is “Why is an entity, X, not connected to a relation, Y?” where X is an entity depicted in the diagram connected to Y, which is a relation depicted in the diagram. To ask this type of question, the user should click on an entity and a relation to which it is connected in the diagram and then click on WhyNot3.

· WhyNot4 – The question template is “Why is an entity, X, not connected to a relation, Y with cardinality, Z?” where X is an entity depicted in the diagram connected to Y which is a relation depicted in the diagram and Z is the cardinality associated with the connection. To ask this type of question, the user should click on an entity, a relation to which it is connected in the diagram and the associated cardinality and then click on WhyNot4.

3.0 Rules and Objects

[image: image6.jpg]Objects

find-more-attributes-for-entities-1

K |

| Fues Cycle Obiects
Cycle

Rules 14 objeas
find-entities-from-nouns-1 :’ er-object
condtion & relation
remove-repeat-nouns-1 é; ecursive-ternary.-relation
&-condtion B
-action |- isa-relation
remove-repeat-nouns-2 |tinary-reiton
- condtion E-recursive-relstion
-action L recursivedernary-reltion

mocifier

mi |7

L prepostiona-mocifier

The Rules and Objects window consists of two list panes, the Rules and the Objects Panes.

The Rules Pane
The Rules List pane lists all of the possible rules that make up the expert system. The conditions and actions of the rules can be viewed by clicking on the “+” next to the word condition or action respectively.

The Object Pane
The Object list pane lists the classes of objects that the expert system uses in processing. Subclasses of each class are listed below each class. If a subclass has more than one superclass, it will appear in blue. Instances of classes are the actual objects that exist in the system. They are listed in red with an identifying attribute next to them. Each instance can be opened by clicking on the “+” next to it to reveal a list of the slots and the respective values of the instance.

The Cycle Number
The Cycle Number tells the user what cycle is current. Each rule firing of the expert system is considered one cycle. The cycle numbers start at zero and end with the number of rule firings in the system.

The Menus on the Rules and Objects Window
The Cycle Menu
The Cycle Menu allows the user to re-establish any past state of the system for investigation of why a rule fired or why a rule did not fire. If there is a Rule Analysis Window open when the cycle is changed, the effect of the change will also be seen in that window as well.

· Next Cycle – this choice will re-establish the next cycle in the expert system’s processing, unless the system is already in the last cycle.

· Previous Cycle – this choice will re-establish the previous cycle in the expert system’s processing, unless the system is already in the first cycle.
· First Cycle – this choice will re-establish the initial state of the expert system for that problem solving episode.
· Last Cycle – this choice will re-establish the final state of the expert system for that problem solving episode.
· Go to Cycle #… - this choice will bring up a pop-up window in which the user can enter which cycle is desired.
The Rules Menu
This menu has only one choice, Show Rule Detail. This choice will bring up the Rules Analysis Window for the rule that is highlighted in the Rules Pane.

The Objects Menu
This menu has only one choice, Show Object Detail. This choice is answered with a history of the object instance highlighted in the Objects Pane. The history of the instance - when it was created, and what modifications were made up to the current cycle (which is the cycle in the Cycle Number).

4.0 The Rule Analysis Window

[image: image7.jpg]£ Rule Analysis
Dycle Questons

Fules found in resporse to question Cycle
Why i this altibute, curent bal, NOT altached to his relaian,
account? NoMatches 14

A aibutes orelatn T

Rule Condiion

(g0al 7a abel refine elaians staus]
{binatyreltion 7 label sccount ttbutes 1a status)

(sreposiionalmodiier 7m label curert-bal quanity 7g modiies-uhat account status n]
[tost o1 (equal 70 1) (equal 79 0-1))

roun 7n label curentbalpropiy i status i)

Rule Action

(@elte natance 7]

deete nstance 7o)

Rule Iformation

This ule i ot fre ching this expert system run.
The goal was rue nthese cycles

i

The Rules Analysis Window provides detailed information regarding the rules of the expert system in a particular cycle of the expert system’s reasoning path. It contains 6 major components.

· The Rules List is a subset of rules from the expert system. The list is dependent upon the manner in which the window was accessed.

· The Matches List lists all of the ways the rule displayed can match into the current state of the knowledge base.

· The Rule Condition Pane displays the conditions or constraints which must be matched with objects in the knowledge base in order for the rule to fire.

· The Rule Action Pane displays what actions will be taken if the rule fires.

· The Rule Information Pane is a text pane which informs the user of information about the rule being displayed.

The information portrayed in the window is context-dependent in two different ways. One of the ways that it is context dependent is the manner in which it is accessed. The Rule Analysis Window can be accessed from in a number of different ways, from the Control Window, from the Rules and Objects Window or as the result of a user question.

· If the window was displayed from the Control Window, all of the rules of the expert system will be available from the Rules List.

· If the window was displayed from the Rules and Objects Window, only the rule highlighted in that window will be available in the Rules List.

· If the window was displayed as the result of a user question, the Rules List will contain only those rules that were pertinent to the question.

· If the question was a “Why” question, only the rule that produced the thing in question will be available in the Rules List. If the question was a “Why Not…?” question, all of the rules that might have produced the thing in question are available in the Rules List.

When the window was displayed as the result of a user question, the question appears in red at the top of the window, below the menubar.

The second way that the Rule Analysis Window is context dependent is that it reflects status of the system at a certain point (a particular cycle) in the system’s processing. That is, the information reflects the status of the rules dependent upon which Cycle is current. That permits the user to examine how the rule can match into the knowledge base of the expert system at any point along the expert system’s reasoning path.

The Rules List

This is a pulldown list that includes either all of the rules of the expert system, or a subset of the rules, depending upon how the Rule Analysis Window was accessed. See the section above describing how the contents of this list are determined. To change the rule displayed in the window, click on the arrow next to the name of the rule currently displayed. Then click on the name of another rule.

The Matches List
This is a pulldown list that includes all of the ways that the rule being displayed in the window can be matched with objects in the knowledge base at the current cycle state. If the rule conditions can match into the knowledge base, each possible match combination is included in this window, identified by a number. The list will always include “0”. This selection will display the rule with no match in place. Choosing another match (above 1, if there are any) will replace the variables in the Rule Condition and the Rule Action panes with a list, in parentheses, of the variable and the value that can be bound to the variable. For example, ?n might be replaced with (?n . car). If the variable binds to an object, the object is represented by the word “Object” and its ID number. For example, ?e might be replaced with (?e. “Object-12”).

The Rule Condition Pane
The Rule Condition Window provides a detailed account of the constraints that must be true in order for a rule to fire. There are three types of clauses that might be seen in the condition of a rule.

· Object clauses – These clauses begin the name of a class of objects. The variable following is bound to an instance of that class, if the clause can be matched. Following the class name and the instance variable are slot-value pairs. The slots are properties of the class and the value is the value that slot contains for a particular instance. If a variable occurs in the value position, that variable will be bound to the slot value of a particular instance. If a variable occurs in more than one clause, it means that what ever value it was bound to initially, will have to match the values where it occurs later.
· Test clauses – These clauses begin with the word “test” and are followed by some test which must be true in order for the rule to fire. Often a test clause may check some relationship between variables such as (test (> ?x ?y)).
· Is-no clauses – These clauses begin with the phrase “is-no” and are followed by an object clause and possibly additional test clauses. This type of clause will be true if there is no object in the knowledge base which matches the conditions of the clauses within it.
Clauses can be highlighted and questions asked about them (“Why”, and “WhyNot”) from the Questions Menu.

The Rule Action Pane
The Rule Action Pane displays the actions of the rule that will be executed, when the rule fires. If the Rule Analysis Window was accessed by a “Why not…?” question, the action that matched the user question will be highlighted.

The Rule Information Pane
The Rule Information Pane lists information about the rule being displayed in the window such as when (which cycles) it fired and when the goal of the rule was true .

The Menus on the Rule Analysis Window

The Cycle Menu

The Cycle Menu allows the user to re-establish any past state of the system for the investigation of why a rule did or did not fire. If there is a Rules and Objects Window open when the cycle is changed, the effect of the change will also be seen in that window as well.

· Next Cycle – this choice will re-establish the next cycle in the expert system’s processing, unless the system is already in the last cycle.

· Previous Cycle – this choice will re-establish the previous cycle in the expert system’s processing, unless the system is already in the first cycle.
· First Cycle – this choice will re-establish the initial state of the expert system for that problem solving episode.
· Last Cycle – this choice will re-establish the final state of the expert system for that problem solving episode.
· Go to Cycle #… - this choice will bring up a pop-up window in which the user can enter which cycle is desired.
The Questions Menu
The Questions Menu allows the user to ask “Why” and “Why not” questions about any subset of clauses of the rule condition.

· Why – This choice asks “Why” the highlighted clause(s) in the Rule Condition Pane are true. Typically, this question will be asked when the rule has been instantiated with a match from the Matches List. The question should be asked on as small a subset of clauses as possible. To ask the question, highlight one or more clauses in the Rule Condition Pane and then choose this menu selection.

· Why Not – This choice asks “Why” the highlighted clause(s) in the Rule Condition Pane are NOT true. Typically, this question will be asked when the rule has been partially instantiated with a match from the Matches List, when the entire rule condition cannot be matched. The question should be asked on as small a subset of clauses as possible. To ask the question, highlight one or more clauses in the Rule Condition Pane and then choose this menu selection.

� EMBED Word.Picture.8 ���

Figure 1. QUE and ERD-QUE.

Student: <draws acceleration vector in same direction as velocity>

Atlas: What is the definition of acceleration?

Student: I don’t have any clue.

Atlas: Ok, let’s try this. If a car was driving along east, which way would you have to push on it to make it stop?

Student: West.

Atlas: Exactly, the opposite direction. What does that tell you about the direction of acceleration?

Student: It goes west too.

Atlas: Right. The net force goes the opposite direction, and so the acceleration. Try to draw the acceleration vector again.

Figure 3. An example of interaction with the Atlas-Andes tutor (Freedman, Rosé, Ringenberg and VanLehn (2000).

� EMBED Word.Picture.8 ���

Figure 5. Paraphrase of a rule from DeBrief (Johnson, 1994).

�

Figure 4. Herman the Bug (Lester, Stone and Stelling, 1999).

� EMBED Word.Picture.8 ���

Figure 6. The QUE architecture.

� EMBED Word.Picture.8 ���

Figure 7. Paraphrase of a rule from DeBrief (Johnson, 1994).

� EMBED Word.Picture.8 ���

Figure 8. Example of a rule antecedent with more complex constraints.

� EMBED MSDraw.Drawing.8.2 ����

Figure 9. Activities facilitated by the context mechanism.

� EMBED Word.Picture.8 ���

Figure 10. First example of numeric constraint relaxation.

� EMBED Word.Picture.8 ���

Figure 11. Second example of numeric constraint relaxation.

� EMBED Word.Picture.8 ���

Figure 12. Third example of numeric constraint relaxation.

� EMBED Word.Picture.8 ���

Figure 13. First example of symbolic constraint relaxation.

� EMBED Word.Picture.8 ���

Figure 14. Second example of symbolic constraint relaxation.

�

Figure 15a. The Rules and Objects Window.

�

Figure 15b. Another view of the Rules and Objects Window.

�

Figure 16. Object Detail Example.

�

Figure 17. The Rule Analysis Window.

(why-not (property ?P))

(why-not ((property ?P building ?B)

 (building ?B type warehouse)))

Figure 18. Internal question syntax.

�

Figure 19. The Control Window.

�

Figure 20. The Problem Description Window.

�

Figure 21. The Expert System Diagram Window.

�

Figure 22. The Alternate Diagram Window.

�
PROBLEM #2�
PROBLEM #3�
PROBLEM #4�
�
Subj#�
Q1�
Q2�
Q3�
Q4�
Q1�
Q2�
Q3�
Q4�
Q1�
Q2�
Q3�
Q4�
�
1�
2�
1�
1�
0�
1�
2�
1�
2�
2�
1�
1�
2�
�
2�
0�
1�
2�
2�
2�
2�
2�
1�
2�
2�
2�
2�
�
3�
2�
2�
2�
1�
2�
2�
2�
1�
2�
2�
2�
2�
�
4�
1�
2�
2�
2�
2�
2�
1�
2�
2�
1�
1�
2�
�
5�
2�
2�
2�
2�
0�
2�
2�
0�
2�
2�
2�
2�
�
6�
2�
2�
2�
2�
2�
2�
2�
1�
2�
1�
0�
2�
�
7�
2�
1�
1�
2�
0�
2�
2�
1�
2�
1�
1�
2�
�
8�
2�
2�
2�
2�
2�
2�
2�
2�
2�
2�
2�
2�
�

Table 2. Scores for Questions 1-4 for Problems 2-4.

�
Education�
Computer use�
Programming languages�
Expert System exp.�
ER Diagram exp.�
Sum of question scores�
�
Education�
1.00�
�
�
�
�
�
�
Computer use�
0.22�
1.00�
�
�
�
�
�
Programming languages�
0.77�
0.11�
1.00�
�
�
�
�
Expert System exp.�
0.87�
0.11�
0.83�
1.00�
�
�
�
ER Diagram exp.�
0.87�
0.19�
0.71�
0.90�
1.00�
�
�
Sum of question scores�
0.89�
0.54�
0.76�
0.83�
0.88�
1.00�
�

Table 3. Correlations of the Sum of Scores for Questions #2 and #3 for Problems 2-4 and Subject Education and Experience Levels.

Subject�
WHY�
FOLLOW-UP WHY�
WHY-NOT�
FOLLOW-UP WHYNOT�
CYCLE

CHANGE�
INSTANTIATION�
�
1�
3�
5�
5�
3�
14�
7�
�
2�
4�
19�
7�
10�
27�
15�
�
3�
7�
29�
8�
4�
66�
20�
�
4�
26�
10�
13�
1�
33�
7�
�
5�
16�
7�
18�
11�
13�
17�
�
6�
5�
17�
13�
6�
42�
13�
�
7�
6�
8�
9�
10�
39�
10�
�
8�
7�
20�
6�
11�
13�
1�
�

Table 4. Subject Use of QUE facilities.

Subj#�
Question Templates�
Rules and Objects Window�
Rule Analysis Window�
Message Pane�
Task Difficulty�
Expert System Competence�
�
1�
7�
4�
7�
7�
5�
7�
�
2�
5�
6�
3�
4�
2�
6�
�
3�
6�
4�
6�
5�
5�
6�
�
4�
6�
6�
6�
6�
5�
6�
�
5�
7�
7�
6�
7�
3�
6�
�
6�
6�
5�
5�
7�
3�
7�
�
7�
5�
3�
3�
5�
2�
5�
�
8�
6�
5�
6�
7�
3�
7�
�

Table 5. Post-Use Questionnaire Ratings of QUE Tools (on a scale of 1 - 7).

Subj#�
Understanding of Expert System Reasoning�
�
1�
4�
�
2�
2�
�
3�
4�
�
4�
5�
�
5�
4�
�
6�
0�
�
7�
0�
�
8�
5�
�

Table 6. Scores of Answers to Question 10 on Post-Use Questionnaire.

�

Figure 23. Problem 1 of ERD-QUE (adapted from Franklin, 2001).

�

Figure 24. Problem 2 adapted from Hawryszkiewycz, (1984).

�

Figure 25. Problem 3 adapted from Teory, (1994).

� The word context is used here to refer to a particular state of the knowledge base. The ERD-QUE interfaces use the word cycle to refer to the same concept.

� The word cycle in ERD-QUE refers to a particular state or context (Section 4.2.1) of the knowledge base corresponding to a particular recognize-act cycle of the inference engine.

PAGE

viii

_1049455433.doc

ERD-QUE

Knowledge Base of Rules and Objects

Inference Engine

QUE

Context Mechanisms

Relaxation Mechanisms

Problem Presentation and Question Asking Facilities

_1049617584.doc

ERD-QUE

Knowledge Base of Rules and Objects

Inference Engine

QUE

Context Mechanisms

Relaxation Mechanisms

Problem Presentation and Question Asking Facilities

_1052815619.doc

(a)

(Class1 ?a slot1 100…)

(b)

(Class1 ?a slot1 ?-1432…)

(test (and (>= ?-1432 90) (<= ?-1432 110)))

_1052815629.doc

(a)

(Class1 ?a slot1 ?C…)

(Class2 ?b slot1 ?C…)

(b)

(Class1 ?a slot1 ?C…)

(Class2 ?b slot3 ?-1765…)

(test (and (>= ?-1765 (- ?C 10)) (<= ?-1765 (- ?C 10))))

_1052815414.doc

 style-preference ?S 	pre-approved “Yes”

 budget ?B

 style ?S 		school-rating	“Good”

 price ?P

Test (>= ?B ?P)

IF

THEN

Modify Client ?C House-List (Add ?H)

Client ?C

House ?H

_1049455694.doc

If the bogey is a contact

and the bogey is hostile

and ROE is achieved

Then employ weapons

_1049460715.doc

(a)

(Client ?C style-preference ?S…)

(Property ?P style ?S…)

(b)

(Client ?C style-preference ?S…)

(Property ?P style ?-3866…)

(test (typep ?-3866 (get-superclass ?S)))

_1047722523.doc

(a)

(test (>= ?B ?P))

(b)

(test (>= ?B (- ?P 5000)))

_1048928376.doc

If the bogey is a contact

and the bogey is hostile

and ROE is achieved

Then employ weapons

_1047724255.doc

(a)

(Client ?C style-preference Early-American-Colonial…)

(b)

(Client ?C style-preference ?-1876…)

(test (typep ?-1876 (get-superclass Early-American-Colonial)))

_1046163343.unknown

